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•Nonlinear coupling between cold (fluid) and hot waves in a time-varying
plasma flow is analyzed with the Vlasov equation.

•The kinetic analysis presents a generalized dispersion relation that
involves resonances depending on cold and hot wave dispersions.

•Both the analytic solution and fully kinetic particle-in-cell (PIC) simulations
demonstrate that the wave spectrum is nonlinearly determined by the
wavenumbers of linearly independent waves.

ABSTRACT
•The kinetic analysis presents a generalized plasma wave dispersion relation
that involves cold-hot coupled resonances at

𝜔𝜔resonant = ∑𝑙𝑙,𝑟𝑟 𝑚𝑚𝑙𝑙𝑟𝑟 �𝜔𝜔𝑙𝑙 + 𝑛𝑛𝜔𝜔𝑐𝑐𝑐𝑐 + 𝑘𝑘∥𝑣𝑣∥, −∞ ≤ 𝑛𝑛,𝑚𝑚𝑙𝑙𝑟𝑟 ≤ ∞.

OUTCOME

•Rapid plasma transports are frequently observed in a variety of situations
such as sawtooh crashes, tearing modes [2], the burst of edge-localized
modes [3], ionospheric flows, and the explosion of coronal loops.

•These events involve time-varying plasma flows 𝐮𝐮𝑐𝑐0 = ∫𝐯𝐯𝑓𝑓s0 d𝐯𝐯/𝑛𝑛s0 =
�𝐮𝐮𝑐𝑐0 + �𝐮𝐮𝑐𝑐0(𝑡𝑡) (species s with a distribution function 𝑓𝑓s = 𝑓𝑓s0 + 𝑓𝑓s1), then
EM waves are excited by �̃�𝐉0 = ∑𝑐𝑐 𝑞𝑞𝑐𝑐𝑛𝑛𝑐𝑐0�𝐮𝐮𝑐𝑐0.

•This work investigates the nonlinear wave-wave coupling, respectively,
induced by �̃�𝐉0 and 𝐉𝐉1 = ∑𝑐𝑐 𝑞𝑞𝑐𝑐 ∫ 𝐯𝐯𝑓𝑓s1 d𝐯𝐯. A generalized dispersion relation
is derived and the resulting wave spectra are studied.
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•Nonlinearly coupled harmonic waves are excited by the time-varying plasma flow.
•The spectrum is determined by �𝜔𝜔 via �̃�𝐤 (characteristic length scale of the

flow) and 𝐤𝐤 ⋅ �𝐮𝐮𝑐𝑐0 (Doppler effect).
•In experiments, it is expected that the plasma flow (current) results in a broad

frequency spectrum by the excitation of cold-hot coupled waves (bottom
panel of (ii)) and the Doppler effect (bottom panel of (iii)).

•The theory will be applied to the spectral interpretation of the transport
processes in the laboratory and magnetospheric plasmas (e.g., MHD
instability, magnetic reconnection, and turbulence).

CONCLUSION

(a) Kinetic analysis
- Zeroth order distribution function:

𝑓𝑓𝑐𝑐0 𝐯𝐯, 𝐱𝐱, 𝑡𝑡 = 𝑛𝑛𝑠𝑠𝑠
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- First order distribution function (integration of the linearized Valsov Eq.):
d𝑓𝑓𝑠𝑠1
d𝑡𝑡

= − 𝑞𝑞𝑠𝑠
𝑚𝑚𝑠𝑠

𝐄𝐄1 + 𝐯𝐯 × 𝐁𝐁1 ⋅ 𝜕𝜕𝑓𝑓𝑠𝑠𝑠
𝜕𝜕𝐯𝐯

⇒ 𝑓𝑓𝑐𝑐1 𝐯𝐯, 𝐱𝐱, 𝑡𝑡 = − 𝑞𝑞𝑠𝑠
𝑚𝑚𝑠𝑠
∫𝑡𝑡𝑠
𝑡𝑡 𝐄𝐄1 + 𝐯𝐯 × 𝐁𝐁1 ⋅ 𝜕𝜕𝑓𝑓𝑠𝑠𝑠

𝜕𝜕𝐯𝐯
d𝑡𝑡′

- Equation of motion:
d𝐯𝐯(𝑡𝑡′)
d𝑡𝑡′

= 𝑞𝑞𝑠𝑠
𝑚𝑚𝑠𝑠

𝐄𝐄0 + 𝐯𝐯 𝑡𝑡′ × 𝐁𝐁0 ⇒ 𝐯𝐯 𝑡𝑡′ = 𝐯𝐯∗ + �𝐮𝐮𝑐𝑐0 + �𝐮𝐮𝑐𝑐0

The time-dependent flow �𝐮𝐮𝑐𝑐0 = ∑𝑙𝑙,𝑟𝑟 �𝑢𝑢𝑐𝑐0𝑙𝑙𝑟𝑟�̂�𝑟 having the 𝑙𝑙th mode �𝑢𝑢𝑐𝑐0𝑙𝑙𝑟𝑟 ∝
cos[�𝜔𝜔𝑙𝑙(�̃�𝐤𝑙𝑙)𝑡𝑡′] is determined by the cold wave dispersion relation with the
flow wavenumber �̃�𝐤. A general dispersion relation including the cold-hot
coupled wave is obtained by combining 𝐉𝐉1 = ∑𝑐𝑐 𝑞𝑞𝑐𝑐 ∫ 𝐯𝐯𝑓𝑓s1 d𝐯𝐯 (equation (2))
with Maxwell’s equations (full analysis and results can be found in [1]).

(b) Particle-in-cell simulation (1-D periodic boundary condition) [4]
- As an example study, the perpendicular wave (𝑘𝑘 = 𝑘𝑘𝑥𝑥) spectrum is examined.
- A time-varying flow with a cold wave frequency �𝜔𝜔(�𝑘𝑘) is given by the initial
EM fields and �𝑢𝑢init ∝ cos(�𝑘𝑘𝑥𝑥) satisfying equations (3)-(4).

METHODS & IMPLEMENTATION

† 𝑣𝑣𝑇𝑇: thermal speed

(2)

𝐯𝐯∗ = 𝑣𝑣⊥ �𝑥𝑥cos𝜔𝜔𝑐𝑐𝑡𝑡 − �𝑦𝑦sin𝜔𝜔𝑐𝑐𝑡𝑡 : Cyclotron motion
�𝐮𝐮𝑐𝑐0: Time-independent flow 
�𝐮𝐮𝑐𝑐0: Time-dependent flow

(3)

𝜕𝜕�𝐮𝐮𝑠𝑠𝑠
𝜕𝜕𝑡𝑡′

= 𝑞𝑞𝑠𝑠
𝑚𝑚𝑠𝑠

�𝐄𝐄0 + �𝐮𝐮𝑐𝑐0 × �𝐁𝐁0

† bar  : time-independent field
tilde: time-dependent field ∝ exp(i�̃�𝐤 ⋅ 𝐱𝐱 − i�𝜔𝜔𝑡𝑡)

Cold wave motion (4)

Case �𝐮𝐮0 (constant flow) 𝐤𝐤 ⋅ �𝐮𝐮0 (Doppler-shift) Remarks

(i) 0 0 Static plasma

(ii) 0.02𝑣𝑣𝑇𝑇𝑇𝑇 �𝑦𝑦 0 Time-varying flow
with a single �𝑘𝑘 :
�𝜔𝜔(�𝑘𝑘) = 0.02𝜔𝜔𝑐𝑐𝑇𝑇(iii) 0.02𝑣𝑣𝑇𝑇𝑇𝑇 �𝑥𝑥 𝑘𝑘𝑥𝑥 �𝑢𝑢0𝒙𝒙

Table A. Initial conditions with �𝐁𝐁𝟎𝟎 = 2�̂�𝑧 T, 𝑛𝑛𝑇𝑇,𝑖𝑖 = 1019 m−3, 𝑇𝑇𝑇𝑇,𝑖𝑖 = 1 keV

(1)

Figure A. Dispersion relations obtained from (a) kinetic analysis and (b) PIC
simulations (electric field intensity on a logarithm scale). (i)-(iii) correspond
to the cases in Table A. Frequency spectrums of the field intensity from the
PIC are plotted in the bottom. In (a), the dispersions of cold (blue, dashed),
hot (red only), and cold-hot coupled waves (red & green in (ii, iii)) are shown.
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† 𝑟𝑟𝐿𝐿: Larmor
radius
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