Physics of negative ions and helicon waves in a resonant antenna plasma source for neutral beams

Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble F-38026, France
Consorzio RFX, Corso Stati Uniti 4, I-33127, Padova, Italy
CEA, IRFM, F-31018, St-Paul-lez-Durance, France

1. In short

- Helicon sources for NIBs: Helicon plasma as negative ion sources could have advantages over traditional ICPs:
 - 1) reduced RF power
 - 2) stable operation at low pressure (~0.3 Pa) resulting in low electron stripping losses
 - 3) higher efficiency of negative ion production in volume-production mode, and a high degree of molecular dissociation, which would be favorable in a caesiated source
 - 4) by producing a magnetized plasma column, they are well-adapted to a blade-shape geometry, such as those required for photo-neutralization devices.

- RAID [1] is a high-power (up to 20kW) helicon source equipped with resonant antennas [2]
 - Helicon plasma in hydrogen and deuterium can be produced and sustained in steady-state
 - RAID plasma exhibits a negative ion-rich shell
 - The maximum negative ion density increases with injected RF power
 - A 1.5 D fluid model coupled to experimental Tin and n in profiles reproduces many observed features
 - Negative ions are generated by dissociative attachment on re-vibrationally excited H2 molecules
 - In the plasma column center, hot electrons destroy H by electron detachment and mutual neutralization. At the edge of the plasma column, atomic detachment destroys H
 - Extraction of negative ions
 - A radial extractor has been developed
 - First experiments demonstrated negative ion extraction

2. The Resonant Antenna Ion Device (RAID) [1]

3. Physics of helicon waves [3,4]

4. The physics of negative ions [10,12]

5. 1.5D fluid model and complex H/Deutchy [5,6,9]

6. Negative ion extractor design and first experiments

References
2. Guittienne et al., 29th EPS Conference, 28th-30th June 2017
6. Guittienne et al., Experiments in Plasma and Laser-Produced Plasmas (Volume 2) (Part A) (Advances in Physics), 2021
8. Fumo et al., 25th EPS Conference, 2018
9. Fumo et al., 26th EPS Conference, 2019
10. A. Simonin et al., Helicon Sources and Plasmas Theory and Applications (2021)