

IMPROVED FUSION PLASMA PERFORMANCE IN FUSION DEVICES ENABLED BY A NEW IMPURITY POWDER INJECTION SYSTEM

R. Maingi¹, A. Bortolon¹, E.P. Gilson¹, R. Lunsford¹, A. Nagy¹, Z. Sun¹, A. Diallo¹, D.K. Mansfield¹
J.S. Hu², Y.Z. Qian², W. Xu², L. Zhang²
H.H. Lee³, S.H. Hong³, S.W. Yoon³

¹ Princeton Plasma Physics Laboratory
² Institute of Plasma Physics, Chinese Academy of Sciences
³ National Fusion Research Institute
IAEA FEC 2021: May 15-20, 2021
Paper TECH/P8-37

The Advent of Impurity Powder Injectors has opened up new science areas in fusion devices

- A new impurity powder droppers (IPD) has been developed at PPPL over the past 4 years
 - Uses piezoelectric crystal motion to drop particles
 - Capable of injecting a wide range of impurity materials (Li, B, B_4C , BN, C, Si, Sn, ...) and sizes (10 μ m 1mm)
 - Builds on PPPL design that worked with metallic powders
 - Has an onboard set of diagnostics
- IPD deployed on six fusion devices worldwide
 - Used to improve wall conditions, enhance power exhaust, and control the pedestal and edge-localized modes (ELMs)
- EAST: B powder enables ELM-stable H-mode
- KSTAR: BN powder enables ELM quiescent phases

Real-time impurity powder injection used for ELM control, wall conditioning and power exhaust

- ELM control: alter edge stability toward ELM-stable or small ELM regimes
 - EAST, KSTAR
- Wall conditioning: continuously repair wall coatings for improved PMI and core performance
 - AUG, DIII-D, EAST, KSTAR, LHD, W7-X, WEST
- Power exhaust: enhance divertor and boundary power dissipation to heat flux control
 - AUG, EAST, DIII-D

Impurity Powder Dropper layout

- Linear feed using piezoelectric crystals
 - 1 mm side to side motion drives particles over trough
 - Calibratable

(b) (b) (b) Drop rate (mg/s)

IPD: A. Nagy et al., RS/ 89 (2018) 10K121

LiPD: D.K. Mansfield et al., FED 85 (2010) 890

IPD Installed on Multiple Devices

EAST summary: ELM suppression with B powder injection achieved with concomitant edge mode with harmonics

- Wide range of operation conditions
 - RF-only & RF + NBI heating: 2.8 MW 7.5 MW
 - q95 between 4.4 and 7.2 (typical 0.5 MA, 2.5 T)
 - Density range: $2.5e19 7.5e19 (0.25 0.85 n_{GW})$
 - With D or He majority
 - Both directions of grad-B drift
 - ELM suppression achieved in every condition we tried! (> few shots)

Threshold B injection rate observed for suppression

- Increased with heating power

Mode triggered and observed on multiple diagnostics

- Multiple harmonics ~ 2-5 kHZ fundamental; only with Boron
- Localized near separatrix and drives particle transport
- Seen in AXUV, magnetics, divertor D_{α} (in, out, top, bottom), tileembedded Langmuir probes, POINT, tangential D_{α} (BES chords)

Powder injection via IPD and related devices are being used in many tokamaks and stellarators

Device	Impurities used in	Wall Conditioning	Power exhaust	ELMs mitigated or
	IPD	e.g. D_{α} reduction	enhanced	pedestal improved
				or τ_E increased
EAST	B powder	\checkmark		\checkmark
	Li powder	\checkmark		\checkmark
	Li granules (0.7mm)	\checkmark		\checkmark
KSTAR	B powder			\checkmark
	BN powder	\checkmark		\checkmark
DIII-D	B powder	\checkmark		
	BN powder	\checkmark	\checkmark	
	Li powder			\checkmark
ASDEX-Upgrade	B powder	\checkmark		
	BN powder	\checkmark		\checkmark
LHD	B powder	\checkmark		\checkmark
WEST	B powder	In progress		
NSTX* (LiPD)	Li powder	\checkmark		\checkmark
W7-X** (probe	B4C powder			
mounted injector)				

EAST: Boron powder injection suppressed ELMs with constant density and stored energy

- Edge B-V emission when B injected (from T_e ~ 150 eV)
- D_{α} reduced w/B inj.; no ELMs
- Density stable and matched
- Stored energy increased slightly
- Harmonic mode destabilized
 - Fundamental n=1
- I_p = 0.5 MA, B_t = 2.5 T, P_{heat}~ 6 MW, USN, grad-B drift 个, toward X-point
 - Type-I ELMs, $H_{98(y,2)} \sim 1$

Threshold B injection rate for ELM suppression measured with 3 MW of heating power (EAST)

- Matched NB power
- B_v emission just below and above B threshold rate
- D_{α} shows ELM modification
- No Mode in no B reference
- Harmonic mode intermittent during ELM mitigation
 - Fundamental n=1
- Harmonic mode steady during ELM suppression

Threshold B injection rate for ELM suppression measured with 6 MW of heating power (EAST)

- Matched NB power
- B_v emission just below and above B threshold rate
- D_{α} shows ELM modification
- No Mode in no B reference
- Harmonic mode intermittent during ELM mitigation
- Harmonic mode steady during ELM suppression

Required B threshold flow rate increases nonlinearly with heating power (EAST)

KSTAR Summary: ELM quiescent phases triggered with B or BN injection

- B powder injection reduced ELM frequency and created a few short lived ELM quiescent phases
 - Baseline D_{α} emission unchanged by B injection
- BN powder injection reduced ELM frequency and created ~ 5sec long ELM quiescent phases
 - Baseline D_{α} emission reduced by BN injection when used in discrete, high amplitude bursts
 - Continuous burst resulted in an ELM frequency and size reduction, as measured by D_{α} spikes
 - ELM quiescent phases could not be reproduced in 2019, despite a reduction in baseline D_{α} emission
- Lack of reproducibility not understood

KSTAR: B powder dropped in six discharges, with two intermixed reference no B discharges

- 21107 Reference shot #20999 1.5 MW, 500 kA standard ELMy H-mode, Bt = 1.82 T
- 21112 To ramp-down t = 10 s 3.5 mg/s powder 4 5 s, 7 8 s
- 21113 Disrupted t = 6 s 3.5 mg/s powder 4 5 s
- 21114 Disrupted t = 6 s 10 mg/s powder 4 5 s
- 21117 Reference 10 s, ELM-free phases No IPD
- 21118 Reference 10 s, ELM-free phases No IPD
- 21121 20 s pulse, ELM-free phases 5 mg/s 3.5 4 s, 8.5 9 s, 13.5 14 s
- 21122 Disrupted t = 5 s, 50% lower $D\alpha$ 5 mg/s 3.5 4 s,
- 21124 Disrupted t = 18 s 5 mg/s, 8.5 9 s, 13.5 14 s, 17.5 18 s

21108 – 21111, 21115 – 21116, 21119 – 21120, 21123 --- various startup and L-H timing problems

ELM quiescent phase triggered by B powder injection in KSTAR

12.5

15.0

17.5

20.0

10.0

ELM quiescent phase triggered by BN powder injection in KSTAR

0.1 s bursts @ 12 mg/s powder at t = 3, 7, 11, 15 s

- 21154 Ref. #21124 (#20999) 21155
- 1.5 MW, 500 kA standard ELMy 20 s H-mode, Bt = 1.82 T

E.P. Gilson et al., Nucl. Mater. Energy (2021) subm.

- 20 s, BN, ELM-free region 0.1 s bursts @ 25 mg/s powder at t = 2, 6, 11 s
- 21156 Failed startup
- 21157 20 s, BN
- 21158 Failed startup
- Disrupted at t = 6 s 21159 18 s, BN
- 21160

CW @ 2.5 mg/s from t = 5 - 15 s

Divertor D_{α} emission dropped markedly in experiments with BN powder in KSTAR

Summary and Future Work

✓ B suppresses ELMs quite easily in EAST

- Constant or increased W_{MHD} , works with SMBI density feedback, no wall hysteresis, over a range of conditions (P_{heat} , density, and v^*)
- Works with pure RF heating: paves the way for long-pulse usage at low B injection rates
- Easier to suppress ELMs with B than Li
- Need to investigate where B mass ends up
- \blacktriangleright New experiment: inject C, B₄C from IPD to see if Z_i matters
- New experiment: compare X-point injection with LFS injection
- ✓ BN and B trigger ELM quiescent phases in KSTAR
 - More prominent with BN than B in 2018
 - Recycling reduced with BN but not B
 - Could not be reproduced in 2019 with BN, despite reduced recycling observation: need to examine a range of explanations