ID: 944 An Improved Equation-Free Method for Gyrokinetic Profile Evolution of Tokamak Plasmas B. Sturdevant^{1*}, S. E. Parker², C. S. Chang¹, and R. Hager¹ ¹Princeton Plasma Physics Laboratory, ²University of Colorado at Boulder *email:bsturdev@pppl.gov

ABSTRACT

- A multiscale method has been developed for accelerating kinetic plasma simulations based on equation-free projective integration [1,2].
- Scheme is implemented in XGCa [3] and demonstrated for gyrokinetic neoclassical ion heat transport problem.
- Profile evolution is accurately reproduced while achieving a 4x speed-up compared to brute force time stepping.

BACKGROUND

 Cross-field transport of particles, energy, and momentum due to turbulence and collisional neoclassical orbital dynamics determines

SIMULATION RESULTS

Long timescale simulations of neoclassical ion heat transport

The equation-free method was demonstrated to accurately predict long timescale ion temperature profile relaxation and evolution of the ion heat flux over a 25 ms time interval. A speed-up factor of 4.4x is achieved using the equation-free approach compared to brute force time stepping.

confinement level in magnetic confinement fusion devices.

- Transport processes are multiscale, presenting enormous challenges for direct numerical simulations based on first-principles.
- Previous methods have generally focused on core transport and make use of 1D transport equations.
- Equation-free projective integration can provide a flexible framework for extending beyond 1D core transport.

NUMERICAL APPROACH

Application to total-*f* gyrokinetic model

A set of low-order 2D fluid moments is selected as a coarse state variable

$$M_{p,q}(\mathbf{X}) = \int v_{\parallel}^{p} \mu^{q} f(\mathbf{X}, v_{\parallel}, \mu) B d\mu dv_{\parallel}$$

A four-step process is followed to advance from t to $t + \Delta t$:

- Simulate f forward in time to $t + \Delta t_e$ allowing transients to settle
- Simulate f an additional Δt_l while collecting snapshot data of low-order fluid moments
- Extrapolate low-order fluid moments to $t + \Delta t$ based on snapshot data 3.

Time history of ion temperature profile (left) and initial and final temperature profiles (right). Simulation results using the equation-free method are compared to a reference solution using direct numerical simulation. Reprinted from [2] with permission from AIP Publishing.

Apply a "lifting" operator to re-initialize kinetic simulations for the next cycle

Illustration of numerical approach

Improved Lifting Method

In lifting, we construct f_{new} whose moments match $M_{p,q}$ at $t + \Delta t$. We attempt to reuse kinetic information from the previous time steps by applying an appropriate scaling to f_{old} at $t + \Delta t_e + \Delta t_l$. This is shown to eliminate spurious transients that were present in previously considered maximum entropy based lifting methods.

25 0.1 0.2 0.3 0.4 0.5

Time history of ion heat flux (left) and snapshots of ion heat flux profiles (right). Simulation results using the equation-free method are compared to a reference solution using direct numerical simulation. Reprinted from [2] with permission from AIP Publishing.

CONCLUSION

- Equation-free projective integration has been applied to accelerate kinetic plasma simulations in XGCa
- It has been demonstrated to accurately predict profile evolution in a neoclassical ion heat transport problem
- Key to this work was the development of an improved lifting operator to smoothly re-initialize simulations after each projective integration cycle.
- Work on applying this method to ITG turbulence problems with heat sources is underway.

ACKNOWLEDGEMENTS / REFERENCES

Evolution of ion temperature after one projective time step is taken. Spurious transient behavior is found for maximum entropy lifting but is eliminated with the improved method. Reprinted from [2] with permission from AIP Publishing.

Work supported by the Exascale Computing Project (17-SC-20-SC) and SciDAC-4 High-fidelity Boundary Plasma Simulation under Contract No. DE-AC02-09CH11466 using resources of the National Energy Research Scientific Computing Center (NERSC) under Contract No. DE-AC02-05CH11231.

References :

[1] I.G. Kevrekidis, C.W. Gear, et al. Comm. Math. Sci., 1(4):715-762, 2003 [2] B. Sturdevant, S.E. Parker, C.S. Chang, and R. Hager. Phys. Plasmas, 27: 032505, 2020.

[3] R. Hager and C.S. Chang. Phys. Plasmas, 23 : 042503, 2016.