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Fast modelling of turbulent transport in fusion
plasmas using neural networks
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Accurate prediction of tokamak core plasma temperature, density, and rotation, is essential for interpretation
and preparation of current-day fusion experiments, optimization of plasma scenarios, and designing future de-
vices. Time-evolved tokamak simulation on discharge timescales is typically carried out within an ’integrated
modelling’approach, where multiple models representing various physics phenomena are coupled together
within a single code or workflow. An essential component of integrated models is the prediction of turbulent
fluxes. In the tokamak core, transport is typically dominated by plasma microinstabilities. However, calcu-
lating these fluxes using first-principle-based nonlinear gyrokinetic models is too computationally expensive
for routine simulation of tokamak discharge evolution. Reduced order turbulence models have thus been
developed for increased tractability. They remain first-principle based yet are computationally cheaper by
invoking the quasilinear approximation. Quasilinear turbulence models like QuaLiKiz [1,2] and TGLF 3 are
approximately 6 orders of magnitude faster than δf local nonlinear codes, providing simulations on discharge
timescales within the order of 100-1000 CPUh within integrated modelling. However, this remains too slow
for extensive discharge optimisation and control-oriented applications.

To circumvent these conflicting constraints of model accuracy and tractability, we present an approach that
leverages machine learning techniques to develop an ultrafast surrogate turbulence transport model for heat
and particle transport [4]. Neural networks (NNs) are applied for regression, to learn theQuaLiKiz multivari-
ate input-output mapping, based on a pre-calculated database of 300 millionQuaLiKiz flux calculations.
The dataset generation covers a wide range of realistic tokamak core parameters. Since input space of the full
QuaLiKiz code (15 dimensions for typical simulations) is too large to cover with a brute force hypercube scan,
we constrain the training set dimensionality to the subset most significantly impacting turbulent transport
within the framework of QuaLiKiz approximations. These input dimensions include the logarithmic ion and
electron temperature gradients (R/LTi,e), density gradient (R/Ln), ion-electron temperature ratio (Ti/Te),
safety factor (q), magnetic shear (ŝ), local inverse aspect ratio (r/R), collisionality (ν∗), and effective charge
(Zeff ), with a carbon impurity and deuterium main ion. Notable simplifications are the exclusion of plasma
rotation, assuming equal density gradient for the two ion species, and no Shafranov shift. The nine inputs
are taken as the feature space of the NNs. The impact of plasma rotation, which cannot be neglected, is taken
into account through a new separate model in post-processing, based on E ×B stabilisation and Parallel Ve-
locity Gradient (PVG) destabilisation as determined from dedicated scans with linear-GENE [5]. A database
consisting of 300 million input-flux relations was generated with HPC resources using 1.3 MCPUh. Covered
regimes include Ion Temperature Gradient (ITG), Trapped Electron Mode (TEM) and Electron Temperature
Gradient (ETG) turbulence. The output consists of ion and electron heat fluxes, particle fluxes, and particle
transport coefficients (separate diffusive and convective terms). All outputs are dimensionless (GyroBohm
units), allowing generalisation to various tokamaks.
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Regularised NNs were trained to provide an accurate and smooth regression of the QuaLiKiz dataset. Signif-
icant effort was made in ensuring the consistency of the regression with key physical features of tokamak
turbulent transport. This includes sharp critical gradients for the onset of ITG, TEM, and ETG turbulent trans-
port, maintaining the identical critical gradient for all transport channels (ion and electron heat, and particle
transport), and ensuring that no spurious positive fluxes are ever predicted by the NN in regions whereQua-
LiKiz predicts mode stability. These constraints were achieved by customised neural network optimization
cost functions, and a careful choice of regressor variables. A high quality regression was achieved, illustrated
by accurate reproduction of complex structure such as ITG-TEM transitions a shown in Figure 1.

The resultant neural network transport model, QLKNN, was coupled to the tokamak modelling framework
JINTRAC [6,7] and rapid control-oriented tokamak transport solver RAPTOR [8]. The coupled frameworks
were benchmarked, and then validated against the original QuaLiKiz model within integrated modelling for
three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport
of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately
reproduce JINTRAC-QuaLiKiz and , but 3 to 5 orders of magnitude faster. Simulations which take hours

https://gitlab.com/qualikiz-group/QuaLiKiz-documents/-/raw/master/conferences/conference_images/plassche_IAEA_2020_92398_full_phys_time.png


are reduced down to only a few tens of seconds. Further numerical optimisation is still feasible, foreseen to
enable realtime predictions. The discrepancy in the final flux-driven predicted profiles between QLKNN and
QuaLiKiz within integrated modelling is on the order 1%-15%. See Figure 2 for an example from JET hybrid
scenario 92398. Dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared
to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition, as
seen in Figure 3.
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Following the QLKNN model development and initial validation, ongoing work focuses on extensive experi-
mental validation of QLKNN predictions, highly facilitated by the model speed, as well as using QLKNN for
scenario optimisation and design. The QLKNN model itself is currently being extended to larger input space,
focusing on the impurity density gradient, and multiple-ion transport important for multiple-isotope fuelling
applications and impurity transport. Additionally, using a robust method to fit a large amount of experimental
kinetic profiles [10], one can base a training set on experimental data, instead of the hyperrectangle method-
ology described here, allowing for more input dimensions to be used. Finally, we are exploring methods
to incorporate prior physics knowledge directly into the neural network architecture itself, for example by
constraining the mapping to a critical gradient model. Deployment of neural network surrogate models –also
beyond turbulent transport - within multi-physics integrated tokamakmodelling is in general a highly promis-
ing route towards enabling accurate and fast tokamak scenario optimization, UncertaintyQuantification, and
control applications.
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