Fast modelling of turbulent transport in fusion plasmas using neural networks

SCIENCE FOR FUTURE ENERGY

Using the QLKNN physics-informed surrogate model for integrated modelling

K.L. van de Plassche (DIFFER), J. Citrin (DIFFER), C. Bourdelle (CEA), Y. Camenen (CNRS), F.J. Casson (UKAEA), V.I. Dagnelie, F. Felici (EPFL-SPC), A. Ho (DIFFER), S. Van Mulders (EPFL-SPC), and JET contributors*

k.l.vandeplassche@differ.nl

*See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al. to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

Need for a real-time capable tokamak simulator

High-fidelity gyrokinetic models (e.g. GENE [1]) are too computationally expensive for applications such as:

- Routine intershot analysis
- Large-scale reactor design
- Control oriented applications

Enable applications by:

- Use reduced model QuaLikiz [2,3]
 to generate dataset
 to seconds on a single core!
- Train Neural Network (NN) surrogate to 'learn' QuaLiKiz mapping, resulting in QLKNN [4, 5]
- Integrate NN in transport codes like RAPTOR [6] and JINTRAC [7]

From one second of plasma... to one year on 1000s of cores..

to one day on 24 cores..

Capturing underlying physical system essential

Neural network training methodology chosen to ensure consistency with known physical constraints [4]. *Sharp instability thresholds*

Only include unstable points in 'goodness' part of cost function

$$C_{good} = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} (QLK_i - NN_i)^2, & \text{if } QLK_i \neq 0\\ 0, & \text{if } QLK_i = 0 \end{cases}$$

Clip negative heat flux q_{i,e} to zero

Matching thresholds for all transport channels Use leading-heatflux style fitting. For example for ITG: train on $q_{i,ITG}$ and $q_{e,ITG}/q_{i,ITG}$, D_i , ITG/ $q_{i,ITG}$, etc. and multiply the output of the networks.

No spurious positive flux in stable region Punish positive predictions with extra cost function term

QLKNN-hyper-10D able to reproduce JET plasmas

 $C_{stab} = \begin{cases} 0, & \text{if } QLK_i \neq 0\\ \frac{1}{n} \sum_{i=1}^n NN_i - c_{stab}, & \text{if } QLK_i = 0 \end{cases}$

Enforce smoothness Punish model complexity using a L2 cost function.

$$C_{regu} = \sum_{i=1}^{\infty} w$$

Sum costs together

 $C = C_{good} + \lambda_{regu} C_{regu} + \lambda_{stab} C_{stab}$

Alternatively use network structure: QLKNN-HornNet, see associated paper

Extension to impurity transport ongoing

QLKNN-hyper dataset expanded with including impurity density gradients and their transport fluxes

variable	# points	\min	max
$k_{\theta}\rho_s \le 1.8$	10	0.1	1.8
$k_{\theta}\rho_s > 2$	8	3	45

												0.						
0.0	0.2	0.4	0.6	0.8	1.0	0.0	0.2	0.4	0.6	0.8	1.0	0.0	0.2	0.4	0.6	0.8	1.0	
ρ_{norm} [-]						$ ho_{norm}$	n [-]			ρ_{norm} [-]								

Solve Ψ,T_e,T_i and n_e in JINTRAC and RAPTOR [4]
 Boundary condition of kinetic profiles prescribed at ρ=0.85

Summary and outlook

 Database of ~10⁸ turbulent ITG, TEM, ETG heat and particle fluxes over wide parameter space was generated using QuaLiKiz
 Trained surrogate model QLKNN validated in RAPTOR and JINTRAC

Ongoing and future work:

- Creation of next generation QLKNN-hyper surrogate with impurity fluxes and impurity density gradients
- Now in production mode, being applied in wider regimes for JET, WEST, AUG, ITER analysis [9]

R/L_{T_i}		0	16
R/L_{T_e}	11	0	16
R/L_{n_e}	11	-5	5
$R/L_{n_{i,0}}$	12	-15	15
	8	0.66	10
$egin{array}{c} q \ \hat{s} \end{array}$	10	-1	4
r/R	7	0.1	0.95
T_i/T_e $ u^*$	7	0.25	2.5
$ u^*$	11	1e - 5	1
Dilution (n_i/n_e)	4	0	0.3

Total flux calculations $2.8 \times 10^9 \approx 4$ MCPUh ≈ 2 TiB netCDF

Run impurities in the trace limit using QuaLiKiz
 Improved collision operator with QuaLiK-2.8.1 [8]
 For higher dimensionality, constrain to JET subspace, for example QLKNN-jetexp-15D for JET [5]

References

[1] F. Jenko, *et al.* PoP 7, 1904 (2000)
[2] J. Citrin, *et al.* PPCF 59, 12405 (2017)
[3] C. Bourdelle *et al.*PPCF 36, 580140 (2016)
[4] K. L. van de Plassche *et al.* PoP 27, 022310 (2020)
[5] A. Ho *et al.* PoP 28, 032305 (2021)

[6] F. Felici *et al.* PPCF **54**, 025002 (2014)
[7] M. Romanelli *et al.* Plasma and Fusion research **9**, 3403023-3403023 (2014)
[8] C. D. Stephens *et al.*, to be submitted
[9] P. Manas, J. Citrin (this conference)