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Capturing underlying
physical system essential

Neural network training methodology chosen to ensure
consistency with known physical constraints [4].

Sharp instability thresholds
Only include unstable points in 'goodness' part of
cost function
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Need for a real-time capable
tokamak simulator

High-fidelity gyrokinetic models (e.g. GENE [1]) are too
computationally expensive for applications such as:

» Routine intershot analysis
» Large-scale reactor design e
» Control oriented applications = gl
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to one year on 1000s of cores..
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GENE Clip negative heat flux g;. to zero
to one day on 24 cores..

Enable applications by: (=5 A
» Use reduced model Qualikiz [2,3] S&<immeT=
to generate dataset to seconds on a single core!

> Train Neural Network (NN)
surrogate to 'learn' QualLiKiz
mapping, resulting in QLKNN [4, 5]

Matching thresholds for all transport channels
Use leading-heatflux style fitting. For example for ITG:
train on gi;rg and ge 16/9i re: DiITG/q; 176, €tC. and

> Integrate NN in transport codes _;O'Kf,saw;og]', B multiply the output of the networks.
like RAPTOR [6] and JINTRAC [7] SR No spurious positive flux in stable region
Punish positive predictions with extra cost function
term
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QLKNN-hyper-10D able to

Enforce smoothness
reproduce JET plasmas punish model complexity
JET #73342 JET #92398 JET #92436 using a L2 cost function. z
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transport ongoing

QLKNN-hyper dataset expanded with including
impurity density gradients and their transport fluxes
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» Solve W,T.,T, and n, in JINTRAC and RAPTOR [4] B/ 12 s
» Boundary condition of kinetic profiles prescribed at p=0.85 f/R 10 .
T,/T. 7 025 25
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Dilution (n;/n.) 4 0 03

Total flux calculations 2.8 x 10° ~ 4MCPUh ~ 2TiB netCDF
> Run impurities in the trace limit using QualLiKiz

> Improved collision operator with QualLiK-2.8.1 [8]
» For higher dimensionality, constrain to JET subspace,
for example QLKNN-jetexp-15D for JET [5]
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