Heavy impurity transport is a key issue in metallic wall tokamaks
Collisional part can be dominant over turbulent one in the core [1]
Derivation of a fast analytical model for collisional impurity transport
Self-consistent Poloidal asymmetry and radial flux
Applicable to rotating & ICRH Heated plasmas [2]
Compared with XTOR [3,4] simulations, and with NEO [5]
Investigation on a rare case of Tungsten accumulation on WEST
ICRH-driven asymmetry could be the main mechanism

Neoclassical impurity transport
With a poloidal distribution parameterized as \(n_i/n_0 = 1 + \delta f_\| + \sin\theta + \sin^2\theta \) [1]:
\[
\mathbf{D}_{ne} = -\nabla \rho_{i} - \nabla \left(\frac{\rho_{i0}}{\rho_{i}} \right) \mathbf{E}_{i} - \nabla \mathbf{E}_{i} = \nabla \left(\frac{\rho_{i0}}{\rho_{i}} \right) \mathbf{E}_{i} - \nabla \mathbf{E}_{i}
\]

Poloidal asymmetry

Self-consistent collisional impurity transport model
Implemented in FACIT code (FaSI Collisonal Impurity Transport):
Impurity flux & asymmetry are non-linear functions of the impurity gradient
Collisional friction couples vertical & horizontal asymmetry: lifting w.r.t. the drive

The natural case (no rotation, no \(\phi \) asymmetry)

Pinch velocity is strongly reduced by poloidal asymmetry at high Z (flat n_0) [6] (fig. 1)

Numerical experiments with XTOR-ZF code [2]
Neoclassical physics [4]
Impurity conservation and momentum equations
The collisionality (\(n_0 \)) is scanned artificially
The circle in the (\(\delta, \lambda \)) plane is recovered …
… as well as the reduction of the pinch velocity (fig. 2)

Neoclassical steady-state (\(\mathbf{M}_\| = 0 \))
Poloidal asymmetry couples (fig. 3)
XTOR simulation follow same initial trajectory in (\(\delta, \lambda \))

Collisional vertical \(\phi \) - asymmetry effect

Extension of the natural case to finite \(\phi \) - asymmetry
Ion-electron collisions drive a vertical \(\phi \) - asymmetry [7]
\[
\Delta n_i = \frac{\rho_i}{\rho_0} \frac{V}{P} \mathbf{E}_{\|} = \frac{\rho_i}{\rho_0} \frac{V}{P} \mathbf{E}_{\|}
\]

Asymmetry recovered with NEO at 1st order : not used for computing impurity flux
But in fact, it strongly impact impurity flux & poloidal asymmetry in the absence of other drives (no rotation & no ICRH) (fig.4)
Only effective at low \(T_i \)

Poloidal asymmetry parameters (\(\delta, \lambda \)) move on a circle as collisionality varies

Tungsten peaking & ICRH operation: a WEST case

Rare cases of Tungsten accumulation on WEST
Low torque plasma: turbulent transport dominates [8]
Accumulation observed in some ICRH pulses (fig.7) (fig.9)

ICRH
Minority temperature anisotropy : horizontal \(\phi \) asymmetry

Tungsten peaking from FACIT consistent with ICRH drive at low \(V_{pe} \) (fig.10)
Rare events show a powerful, radiative power and core electron temperature.

Modeling of Tungsten peaking
Interpretative integrated modeling with METIS [9]
Ion temperature deduced neutron flux & \(T_N \)
Minority temperature anisotropy : EVE/AQL [10] (fig. 8)
Minority temperature screening effect not considered
Toroidal rotation not measured but (4,1) MHD mode accelerates linearly with ICRH power (fig.9)
Rotation: \(\Omega_i = V_{ei} + (V/P) \times \mathbf{J}_i \); with \(V/P \sim 0 \) km/s/MW
Tungsten peaking from FACIT consistent with ICRH drive at low \(V_{pe} \) (fig.10)

References

Acknowledgements

This work has been carried out within the framework of the EUROFusion Consortium and the French Research Federation for Fusion Studies and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 833053 for the project ENR-MFE19.CEA-03. We benefited from HPC resources from GENCI (project 056348). The views and opinions expressed herein do not necessarily reflect those of the European Commission.