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Turbulence simulations and Braginskii-style
transport coefficients based on high precision

gyrokinetic Landau collision operator
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Trustworthy gyrokinetic (GK) or two-fluid (2F) edge turbulence simulations require an accurate representation
of collisions in gyro-centre coordinates or by appropriate transport coefficients, respectively. GK collision op-
erators have so far been limited either to models for the (trustworthy) Landau-Fokker-Planck operator which
have been transformed to the GK gyro-centre coordinates (1), or to the full Landau operator but in a purely
drift-kinetic setting (2). 2F transport coefficients have been obtained in several complex analytical calculations
and approximations (3) for infinite ion-electron mass ratio, but with rather intransparent ordering schemes
and some missing coefficients.
This state is in both cases unsatisfactory. Moreover, differing levels of collision representation in GK (4) and
2F (5) turbulence simulations have precluded stringent comparisons between both frameworks in their over-
lap region of validity.
Motivated by the successful use of half-sided hermite or similar orthogonal polynomials Pi as velocity space
basis functions (4,6), a numerical code for the matrix elements for any species pair a, b,
⟨fa,i,l|Cab|fb,j,l⟩, fa,i,l(v) = Ll(v∥a/va)Pi(va) exp(−mav

2
a/(2T ))

of the linearized but otherwise complete Landau operator Cab was developed. Ll are the Legendre polyno-
mials for the pitch angle distribution, fa,i,l is the basis function for species a and radial and angular indices
i, l. This approach turned out to be amazingly successful. It is not even necessary to explicitly demand con-
servation laws or the H-theorem, as all the matrix elements are computed up to nearly machine precision
(14-15 digits) and automatically fulfill those requirements, which has been confirmed by extensive tests, even
for unrealistically large particle mass ratios (up to 1010). This in turn simplifies and streamlines the code
significantly, which is exactly what allows the high precision. The code is also quite efficient - it takes only
seconds on a laptop to calculate the Landau matrix elements for hundreds of polynomials.
As illustration of the convergence the electron/ion Spitzer transport values for infinite mass ratio for increas-
ing number n of polynomials, calculated from an inversion of the collision matrix for given electric field or
temperature gradients, are here compared with literature values:
n λ11 λ12 λ22 αi

4 1.9729113706547 1.3507439973966 3.5912394745740 3.5751695538083
10 1.9758136156134 1.3887606183611 4.1791659178893 3.9502079279755
20 1.9758224556276 1.3887475542516 4.1791860160905 3.9502080688609
40 1.9758225395211 1.3887474651190 4.1791861130853 3.9502080688623
60 1.9758225395566 1.3887474650753 4.1791861131411 3.9502080688623
(7) 1.9757 1.3889 4.1789
(8) 1.975 1.389 4.174 3.91

The customary coefficients of (9) are related by σ∥ = λ11ne
2τei/me, RT,∥ = −λ12/λ11n∂∥Te, κ

e
∥ =

(λ22−λ2
12/λ11), κ

i
∥ = αinTiτii/mi. For realistic ion/electron mass ratio certain coefficients are significantly

altered, e.g. for Deuterium αi = 3.25485015, or the ion magnetic pumping coefficient ηi
0 = 0.913634368

instead of the Braginskii 0.96 (the slight uncertainty is due to the uncertain mass ratio). Carrying out the same
calculations for the Sugama model operator (1) results in more serious deviations, (αi, η

i
0) = (2.58, 0.760).

Here is an exemplary eigenstate with Ti ̸= Te of the collision operator formi/me = 100, which exhibits the
interaction of thermal ions and low velocity electrons by a flattening of the low energy electron distribution:
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fe(ue), fi(ui) are spherically symmetric perturbations of the electron/ion distribution functions, ua :=√
2Ta/ma.

For GK simulations the above matrix elements must be transformed to gyro-centre coordinates just as the
model operators in [ref1], i.e., the gyro-transformed matrix elements
⟨fa,ia,la |Cab|fb,ib,lb⟩, fa,ia,la(va) = exp(−ik · ρa)fgc,a,ia,la(v⊥, v∥), rρa = ma

qaB
(B × va),



must be obtained, where fgc,a,ia,la is the gyro-centre distribution basis function for species a, indices ia, la.
This computation is carried out with exponential convergence by expanding the angular dependence fa,ia,la
in spherical harmonics and the v dependence in the Pi. The wavenumber dependence is treated efficiently
by representing it with a Chebyshev interpolant. On a parallel machine, all required GK matrix elements for
typical ion-scale turbulence simulations result in seconds, again with 14-15 digits precision.
With the described code it is easy to give much more accurate perpendicular Braginskii-style transport coef-
ficients than currently known (3,9). E.g., for the perpendicular electron heat conduction one gets
meω

2
ceτeiκ⊥,e/(nTe) ≈ 4.6642135623731056,

up to 14 digits equal to 13/4 +
√
2, an identity which seems not to be known in literature.

In the contribution a comparison survey of GK turbulence simulations for the Sugama and Landau collision
operators as well as 2F turbulence simulations using the newly determined high accuracy transport coeffi-
cients will be shown. Another area of comparison are high accuracy GAM and zonal flow damping rates.
The inaccuracies of the Landau operator itself are larger than the numerical ones of the presented computa-
tions. The accuracy is however beneficial, as it is cheap and takes care of the fundamental properties of the
operator (self-adjointness, conservation laws, invariances and the H-theorem). In addition the method can
serve as a blueprint to implement more accurate operators, such as a combination of the Balescu-Lenard op-
erator with the Boltzmann operator at large collision angles, which would only render the initial calculation
of the matrix elements more costly but not the gyrotransformation.
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