

Turbulence simulations and Braginskii-style transport coefficients based on high precision gyrokinetic Landau collision operator K. Hallatschek, Max-Planck-Institute for Plasma Physics, Garching, Germany Klaus.Hallatschek@ipp.mpg.de

Introduction

- Trustworthy gyrokinetic or two-fluid edge turbulence simulations require accurate representations of collisions
- Gyrokinetic simulations (largely) limited to model operators (e.g. Sugama operator) or drift-kinetic Landau operator
- Fluid simulations limited to analytical Braginskii approximation (Landau based, low order moments, infinite electron-ion mass ratio)
- Meaningful comparisons in fluid limit impossible
- Calculating (linearized) gyrokinetic complete Landau operator matrix elements nearly exactly can solve both problems

Landau collision operator

Gyrotransformation

- gyrokinetic matrix elements: $\langle f_{gc,a,i_a,l_a} | C^{ab} | f_{gc,b,i_b,l_b} \rangle$ $f_{gc,a,i_a,l_a}(\boldsymbol{v}_a) := \exp(-i\boldsymbol{k}\cdot\boldsymbol{\rho}_a)f_{a,i_a,l_a}(\boldsymbol{v}_{\perp},\boldsymbol{v}_{\parallel})$ (i.e. gyrocenter coordinates) $\boldsymbol{\rho}_a = \frac{m_a}{q_a B} (\boldsymbol{B} \times \boldsymbol{v}_a)$
- gyrotransformation by expansion in regular matrix elements
- k expansion in Chebyshev polynomials
- seconds on parallel machine for reasonable $k\rho_i \lesssim 100$ to machine precision (10-14 digits)
- physical restrictions maintained due to accuracy
- can be used to calculate highly accurate perpendicular transport coefficients

Magnetized transport coefficients

• nonlinear: $c^{ab}(f_a, f_b) = \frac{c_{ab}}{m_a} \nabla_a \cdot \int d^3 v_b K(\boldsymbol{u}) \cdot \left(\frac{f_b \nabla_a f_a}{m_a} - \frac{f_a \nabla_b f_b}{m_b}\right) \quad K(\boldsymbol{u}) := \frac{1 - \hat{\boldsymbol{u}}\hat{\boldsymbol{u}}}{u}$ • linearized: $C^{ab,T}\delta f_a + C^{ab,F}\delta f_b := c^{ab}(\delta f_a, f_{b0}) + c^{ab}(f_{a0}, \delta f_b)$ $\delta f_s := f_s - f_{s0}$

• matrix elements: $\langle f_{a,i,l} | C^{ab} | f_{b,j,l} \rangle$ $f_{s,i,l}(v) = L_l(v_{\parallel s}/v_s)P_i(v_s) \exp(-m_s v_s^2/(2T))$ P_i half-sided Hermite or similar polynomials L_l Legendre polynomials scalar products: $\langle f_s | g_s \rangle := \int \frac{f_s(v_s)g_s(v_s)}{f_{s0}(v_s)} d^3 v_s$ operator notation as in quantum mechanics

- regular ("unmagnetized") matrix elements extremely efficient, hundreds of them in seconds on a laptop
- machine precision accuracy (14-15 digits) even for unrealistically high mass ratios ($\sim 10^{10}$)
- automatic conservation of all physical conservation laws, H-theorem
- Can be used to compute standard unmagnetized transport coefficients with unprecedented precision

Unmagnetized transport coefficients

• Spitzer transport coefficients illustrating convergence for increasing

• perpendicular transport coefficients not corresponding to simple numbers in [NRL 2019] (all given digits are significant):

		[NRL 2019]	accurate value
perp. e	electron heat flux coefficient $m_e \omega_{ce}^2 \tau_{ei} \kappa_{\perp,e} / (nT_e)$	4.7	4.6642135623731056
p	perpendicular electron viscosity $\eta_1^e/(nT\tau_{ei})$	0.51	0.71213203435597
I	perp./parallel electron viscosity $\eta_2^{e}/(nT\tau_{ei})$	2.0	2.84853

• one value is so accurate that one can guess a (new) analytical expression: $m_e \omega_{ce}^2 \tau_{ei} \kappa_{\perp,e} / (nT_e) = 13/4 + \sqrt{2}$ • the deviation by about $\sqrt{2}$ for the other two values hints at a mix-up between τ_{ei} and τ_{ii} in the original publication • all other values agree with [NRL 2019]

Realistic ion/electron mass ratio

 several degrees of freedom to expand kinetic equation to obtain fluid transport coefficients, one possibility: replace stationary infinite mass ratio eigenstates corresponding to by slowly changing eigenstates, e.g., one such T_i, T_e, n_i, n_e, u eigenstate corresponds to $\delta T_i = -\delta T_e$, $n_i = n_e = n_0$, u = 0,

number n of radial polynomials (Z=1, infinite mass ratio):

п	λ_{11}	λ_{12}	λ_{22}	α_i
4	1.9729113706547	1.3507439973966	3.5912394745740	3.5751695538083
10	1.9758136156134	1.3887606183611	4.1791659178893	3.9502079279755
20	1.9758224556276	1.3887475542516	4.1791860160905	3.9502080688609
40	1.9758225395211	1.3887474651190	4.1791861130853	3.9502080688623
60	1.9758225395566	1.3887474650753	4.1791861131411	3.9502080688623
Belli 2012]	1.9757	1.3889	4.1789	
linton 83]	1.975	1.389	4.174	3.91

with definitions [Hinton 83]

$$j_{\parallel,e} = \frac{enT\tau_{ei}}{m_e} (\lambda_{11}A_1 + \lambda_{12}A_2), \quad q_{\parallel,e} = -\frac{nT^2\tau_{ei}}{m_e} (\lambda_{11}A_1 + \lambda_{12}A_2), \quad q_{\parallel,i} = -\frac{nT^2\tau_{ii}}{m_i}\alpha_i A_3$$
$$A_1 = \partial_{\parallel} \ln p_e + \frac{e}{T_e} \partial_{\parallel} \phi, \quad A_2 = \partial_{\parallel} \ln T_e, \quad A_3 = \partial_{\parallel} \ln T_i$$

Braginskii style transport coefficients are related by [NRL 2019]

 $\sigma_{\parallel} = \lambda_{11} n e^2 \tau_{ei} / m_e, \ R_{T,\parallel} = -\lambda_{12} / \lambda_{11} n \partial_{\parallel} T_e, \ \kappa_{\parallel}^e = (\lambda_{22} - \lambda_{12}^2 / \lambda_{11}), \ \kappa_{\parallel}^i = \alpha_i n T_i \tau_{ii} / m_i$

• further Braginskii coefficients compared to best known values (Z=1, infinite mass ratio, all given digits significant):

> [NRL 2019] accurate value

heat exchanging distribution:

0.3

0.25

$$u_a := \sqrt{2T_a/m_a} \qquad m_i/m_e = 100$$

 $f_e(u_e), f_i(u_i)$ spherically symmetric perturbations of electron, ion distribution function

significant changes from infinite mass ratio values • e.g. for Deuterium: $\alpha_i = 3.25485015$ $\eta_0^i = 0.913634368$ • dependence of parallel heat flux coefficient on mass ratio:

frictional heat flux coefficient	0.71	0.70287054493606
parallel electron thermal conductivity	3.2	3.203076425585
ion viscosity $\eta_0^i/(nT\tau_{ii})$	0.96	0.96529161180214
electron viscosity $\eta_0^e/(nT\tau_{ei})$	0.73	0.733488956541

- customary transport values not given in truly independent set of variables (e.g. parallel velocity depends on density gradient) > in general: transport matrix in independent set of variables Conclusions:
- Inaccuracies of Landau operator larger than numerical ones •Accuracy takes care of fundamental properties (selfadjointness, conservation laws, invariances, H-theorem)

[Hinton 83] F.L. Hinton, Handbook of Plasma Physics 1, 147 (1983) **EUROfusion** [Belli 2012] E.A. Belli, J. Candy, Plasma Phys. Control. Fusion **54**, 015015 (2012) [NRL 2019] A.S. Richardson, NRL plasma formulary, (2019)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

e.g. this term is completely absent in Braginskii. • Sugama model operator in comparison: $(\alpha_i, \eta_0^i) = (2.58, 0.760)$

•model operators/infinite mass ratio both partially far off •Spin-off: Extremely accurate fluid transport coefficients •Blueprint for more advanced operators (Balescu, Boltzmann)