Introduction

* Trustworthy gyrokinetic or two-fluid edge turbulence simulations
require accurate representations of collisions

* Gyrokinetic simulations (largely) limited to model operators (e.qg.
Sugama operator) or drift-kinetic Landau operator

*Fluid simulations limited to analytical Braginskii approximation
(Landau based, low order moments, infinite electron-ion mass ratio)

* Meaningful comparisons in fluid limit impossible

=>Calculating (linearized) gyrokinetic complete Landau operator
matrix elements nearly exactly can solve both problems

Landau collision operator
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* matrix elements: fii1(9) = Li(v) /vs) Pi(vs) exp(—msvZ /(2T))

P; half-sided Hermite or similar polynomials
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L; Legendre polynomials
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*regular (“unmagnetized”) matrix elements extremely efficient,
hundreds of them in seconds on a laptop

* machine precision accuracy (14-15 digits) even for unrealistically
high mass ratios (~ 1010)

=> automatic conservation of all physical conservation laws,
H-theorem

=>can be used to compute standard unmagnetized transport
coefficients with unprecedented precision

Unmagnetized transport coefficients

* Spitzer transport coefficients illustrating convergence for increasing
number n of radial polynomials (Z=1, infinite mass ratio):
n A1 A2 A2 o

4 1.9729113706547  1.3507439973966  3.5912394745740  3.5751695538083
10 1.9758136156134  1.3887606183611 4.1791659178893  3.9502079279755

20 1.9758224556276  1.3887475542516 4.1791860160905 3.9502080688609
40 1.9758225395211 1.3887474651190 4.1791861130853  3.9502080688623
60 1.9758225395566  1.3887474650753 4.1791861131411  3.9502080688623
[Belli 2012] 1.9757 1.3889 4.1789
[Hinton 83] 1.975 1.389 4.174 3.91
with definitions [Hinton 83]
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Braginskii style transport coefficients are related by [NRL 2019]
0| = A1ine’tei/me, Ry, = —A12/Annd| T, k= (A2 — A3,/ A1), Kﬁ = a;nT;Ti; [m;

* further Braginskii coefficients Compared to best known values (Z=1,
infinite mass ratio, all given digits significant):

INRL 2019] accurate value
frictional heat flux coefficient 0.71 0.70287054493606
parallel electron thermal conductivity o 02 3.203076425585
1on viscosity 176/ (nT1y;) 0.96 0.96529161180214
electron viscosity r}ﬁ [(nTTe;) 0.73 0.733488956541

*customary transport values not given in truly independent set of
variables (e.g. parallel velocity depends on density gradient)
=2in general: transport matrix in independent set of variables

Conclusions:
*[naccuracies of Landau operator larger than numerical ones

*Accuracy takes care of fundamental properties (self-
adjointness, conservation laws, invariances, H-theorem)
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Hinton 83] F.L. Hinton, Handbook of Plasma Physics 1, 147 (1983)
E U RO f I Belli 2012] E.A. Belli, J. Candy, Plasma Phys. Control. Fusion 54, 015015 (2012)
7 US On NRL 2019] A.S. Richardson, NRL plasma formulary, (2019)

Turbulence simulations and Braginskii-style transport coefficients

based on high precision gyrokinetic Landau collision operator

K. Hallatschek, Max-Planck-Institute for Plasma Physics, Garching, Germany
Klaus.Hallatschek@ipp.mpg.de

Gyrotransformation
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* gyrotransformation by expansion in regular matrix elements

* k expansion in Chebyshev polynomials

* seconds on parallel machine for reasonable kp; < 100to machine
precision (10-14 digits)

* physical restrictions maintained due to accuracy

* can be used to calculate highly accurate perpendicular transport
coefficients

* gyrokinetic matrix elements:
(i.e. gyrocenter coordinates)

Magnetized transport coefficients

*perpendicular transport coefficients not corresponding to simple
numbers in [NRL 2019] (all given digits are significant):

INRL 2019] accurate value
perp. electron heat flux coefficient memge TeiK1 e/ (nTe) 4.7 4.6642135623731056
perpendicular electron viscosity n7/(nTe;) 0.51 0.71213203435597
perp./parallel electron viscosity 75 /(nTe;) 2.0 2.84853

*one value is so accurate that one can guess a (new) analytical
expression: mew?2, teiki o/ (nT,) = 13/4+V2

* the deviation by about V2 for the other two values hints at a mix-up
between T.; and T7;; inthe original publication

* all other values agree with [NRL 2019]

Realistic ion/electron mass ratio

*several degrees of freedom to expand kinetic equation to obtain
fluid transport coefficients, one possibility:
replace stationary infinite mass ratio eigenstates corresponding to
by slowly changing eigenstates, e.g., one such
eigenstate corresponds to 6T; = —6T, n; = n. = ng, u =0,
heat exchanging distribution:
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> significant changes from infinite mass ratio values
*e.g. for Deuterium: a; = 3.25485015 1, = 0.913634368

* dependence of parallel heat flux coefficient on mass ratio:

T;‘:: TE: nf: nE: u

fo(Ue) m;/m, = 100

i o =N,

fe(ue), fi(u;) spherically symmetric
perturbations of electron, ion distribution
function
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* mass ratio dependent electron-ion cross heat flux significant:
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e.g. this term is completely absent in BraginskKii.
* Sugama model operator in comparison: (ai,n;) = (2.58,0.760)

*model operators/infinitfe mass ratio both partially far off
*SpiN-off: Extremely accurafe fluid transport coefficients
*Blueprint for more advanced operators (Balescu, Boltzmann)
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