Simulation focus: mid-radius

- Internal-reference, laser-based interferometer: images line-integrated density fluctuations in plane perpendicular to beam
- Both k and k_θ wave vectors at the edge, mainly k in the center
- Served for detection of complex spatial structures such as zonal flows
- Comparisons with gyrokinetic modelling mediated by a synthetic diagnostic

This work was supported in part by the Swiss National Science Foundation.
The authors gratefully acknowledge members of the JT-60SA Integrated Project Team for data exchange and fruitful discussions.

A phase-contrast-imaging core fluctuation diagnostic and first-principles turbulence modeling for JT-60SA

S. Coda1, A. Iantchenko1, K. Tanaka2, S. Brunner1, M. Toussaint1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
2 National Institute for Fusion Science, Toki, Japan
stefano.coda@epfl.ch

Sensitivity

- Improves with laser power
- Depending on integration length, densities as low as 10^{15} m$^{-3}$ can be measured

Gyrokinetic modelling

- GENE code [6]
- Scenario 1: DND 41-MW full current
- Linear analysis shows importance of retaining full physics, esp. impurities, e.m. effects
- ETGs could be important but nonlinear ETG/ITG interaction appears minor

Unfinished (non-steady-state) nonlinear e.m. flux-tube simulation

Conclusions

- Tangential PCI system planned for JT-60SA, would likely provide first deep insight into turbulence in reactor environment and usher in the next level of model validation
- Measures full profile in all plasma conditions
- 1 MHz bandwidth, 0.33<k<20 cm$^{-1}$, \intdn dl>1014 m$^{-2}$
- $\Delta \rho<0.1$ (axis + edge), 0.4-0.1 at mid-radius ($k=2-10$ cm$^{-1}$)

Design criteria

- CO2 laser wavelength 10.6 μm
- Tangential port assemblies P1 and P8 can fit 18-cm beam
- Chosen path resolves just inside LCFS and near magnetic axis

Spatial localization

- Measurement location vs k direction is partially double-valued: no localization loss in our geometry as two locations have same ρ
- k-dependent but well-known transfer function
- Good aggregate localization, improving with k

Mainly k_ρ in center, k_ρ and k_θ at edge

- Mainly k_ρ in center, k_ρ, and k_θ at edge

Experimental technique

- Internal-reference, laser-based interferometer: images line-integrated density fluctuations in plane perpendicular to beam
- Localization is achieved by selecting k direction, which must be locally oriented along B [x k_0]
- Good localization near tangency point because B x k_0 varies rapidly, and $d\rho/dl=0$ enhances effect (HFS edge in our geometry)
- $d\rho/dl=0$ also on the magnetic axis, so localization there is good too

Hardware layout

- Beam-generation and detection equipment above vessel
- Simple with no optics on the vessel

Hardware layout

- Beam-generation and detection equipment above vessel
- Simple with no optics on the vessel

Conclusions

- Tangential PCI system planned for JT-60SA, would likely provide first deep insight into turbulence in reactor environment and usher in the next level of model validation
- Measures full profile in all plasma conditions
- 1 MHz bandwidth, 0.33<k<20 cm$^{-1}$, \intdn dl>1014 m$^{-2}$
- $\Delta \rho<0.1$ (axis + edge), 0.4-0.1 at mid-radius ($k=2-10$ cm$^{-1}$)