

Impurity transport in collisionless trapped-particle-driven turbulence

- M. Lesur (maxime.lesur@univ-lorraine.fr), E. Gravier, K. Lim, C. Djerroud Institut Jean Lamour (IJL), CNRS / Université de Lorraine, Nancy, France
- M. Idouakass

National Institute for Fusion Science (NIFS), NINS, Toki, Japan

X. Garbet

CEA, Institut de Recherche sur la Fusion Magnétique (IRFM), Saint-Paul-lez-Durance, France

IAEA FEC

May 14th, 2021

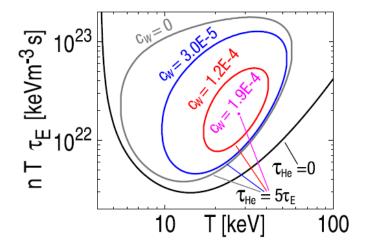
Context: gyrokinetic simulations of impurity transport in the core of tokamaks

Fusion efficiency is sensitive to core impurity concentration

 Reduction of tungsten concentration from 1.2x10⁻⁴ to 0.3x10⁻⁴

40% decrease in required triple product40% decrease in required temperature

 \Rightarrow easier access to ignition


Challenge for gyrokinetic simulations

- Neoclassical and turbulent transport [Romanelli NF'98]
- Synergistic coupling [Estève NF'18]
- Disparate timescales

Focus on dynamics of trapped particles

 \Rightarrow bounce-averaged gyrokinetics

[Pütterich NF'10]

Objectives: Qualitative impacts of impurity concentration, charge, mass, and gradients

1. Impact of concentration

- In general, turbulence \implies impurities \implies self-consistent (active) treatment
- But if concentration → 0, passive treatment is a promising approach. Limit of validity? Smooth transition or critical threshold?

2. Diffusion, thermo-diffusion, and curvature pinch

• Total density flux of impurity with charge Z

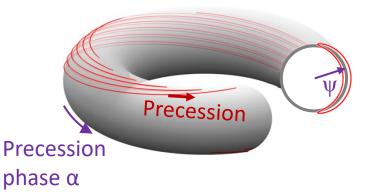
$$\Gamma_{z} = -D_{z} \left[\nabla n_{z} + C_{T} \nabla T_{z} + C_{P} \nabla q \right]$$

Diffusion Thermodiffusion Curvature

 Each contribution can be isolated by varying the density and temperature gradients, and by artificially switching on/off the curvature drift

 \Rightarrow parameter scans in charge, mass, gradients, and magnetic shear

Reduced model for trapped-particle-driven turbulence


Bounce-averaged gyrokinetic model

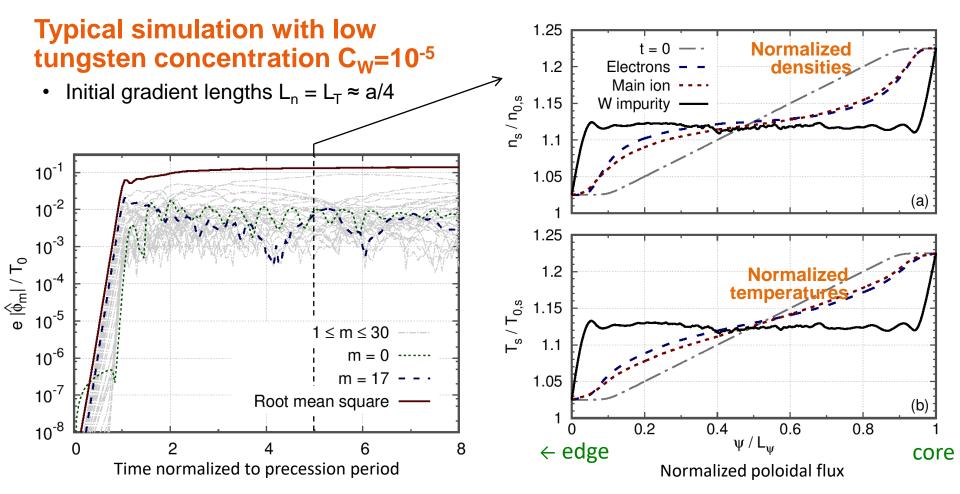
• Based on frequency ordering for TIM and TEM

 $\omega \thicksim \omega_{\text{precession}} << \omega_{\text{bounce}} << \omega_{\text{cyclotron}}$

- Kinetics of trapped particles only
 (adiabatic passing particles)
- 2D phase space (angle α, radius ψ)
 + 2 parameters (energy and pitch-angle)

$$\frac{\partial f_s}{\partial t} + [J_0\phi, f_s]_{\alpha,\psi} + \omega_{d,s} \frac{\partial f_s}{\partial \alpha} = 0$$

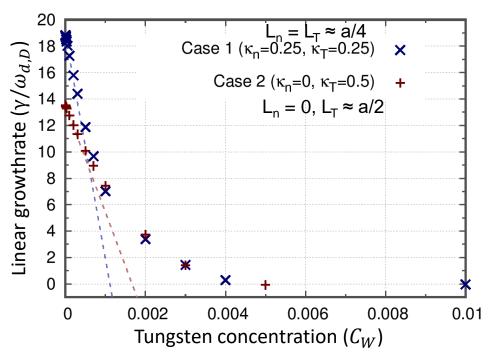
$$\omega_{d,s} = E\Omega_d/Z_s$$


$$\frac{C_{ad}\left(\phi - \epsilon_{\phi}\left\langle\phi\right\rangle\right) - C_{pol}\sum_{s}C_{s}\tau_{s}Z_{s}^{2}\bar{\Delta}_{s}\phi}{\delta\rho_{\text{polarization}}} = \frac{2}{\sqrt{\pi}}\sum_{s}\left(Z_{s}C_{s}\int_{0}^{\infty}J_{0,s}f_{s}E^{1/2}\mathrm{d}E\right)$$

\Rightarrow TERESA simulation code (N species)

[Drouot EPJD'14] [Cartier-Michaud JPCS'15]

1. Impact of impurity concentration


Timescale of flattening of impurity profiles depends on concentration

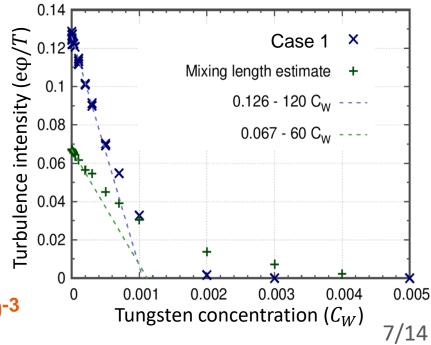
Timescale of flattening or impurity profiles

- Trace concentration \rightarrow within a fraction of a precession period
- Non-trace concentration \rightarrow several precession periods (similar to main species)

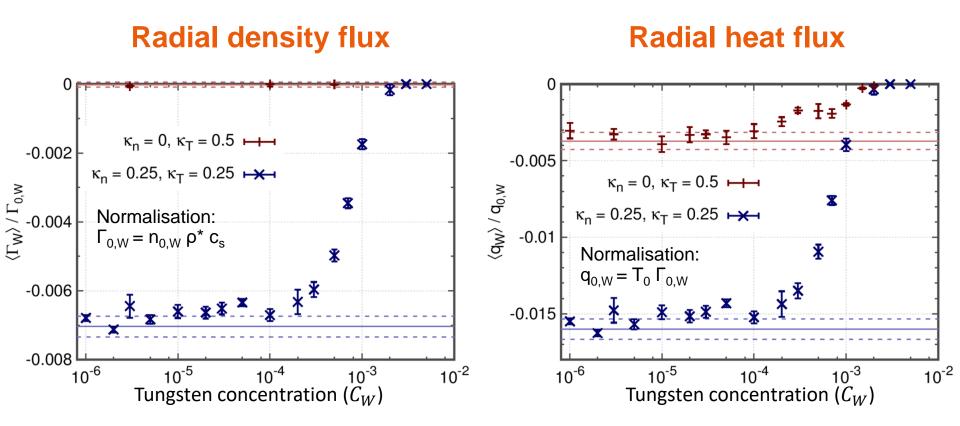
Growth rate and turbulence intensity decrease with increasing C_W , linear for $C_W < 5.10^{-4}$

Turbulence intensity \downarrow with C_w \uparrow

- Qualitative agreement with mixing length estimate $e\phi/T_0 = \gamma/(k_r \rho_{c,i} k_\theta c_s)$
- But not simply proportional to γ


 \Rightarrow Passive treatment valid for C_w<<10⁻³

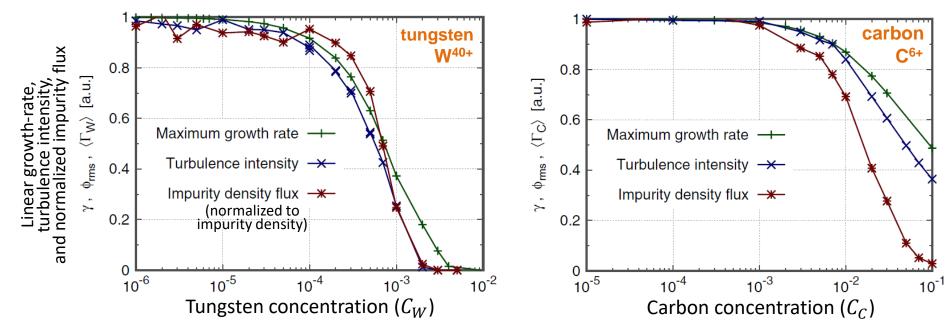
Linear growth rate \downarrow with C_w \uparrow


- Consistent with linear GK [Dominguez NF'89]
- Due to dilution [Du NF'14]

•
$$\frac{\gamma - \gamma_0}{\omega_{d,D}} \sim -10^4 C_W$$

 Quantitative agreement with analytic theory [Lesur NF'20]

C_w=2.10⁻⁴ threshold for radial fluxes of W⁴⁰⁺



Caveats

- Effect of low-frequency turbulence only, no neoclassical transport
- Small system size ($\rho^* \approx 1 / 30$), radial profiles constrained by thermal baths

Comparing the effects on linear modes, turbulence, and transport

Dependency of normalized impurity transport is more thresholdlike than that of linear growth rate and turbulent intensity

• Here, all quantities are normalized to their value in the limit of zero impurity concentration

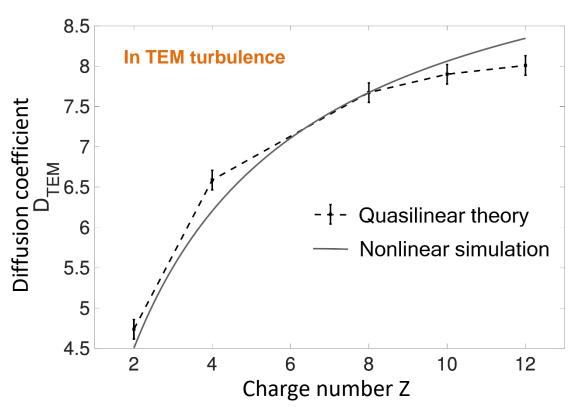
Transport quenching is due to phase synchronization

- Electric potential fluctuations synchronize to impurity density fluctuations
- · Occurs only above critical concentration

[Lesur NF'20]

2. Diffusion, thermo-diffusion, and curvature pinch

Impact of charge and mass numbers on diffusive impurity transport


Isolating particle diffusion

$$\Gamma_z = -\boldsymbol{D}_z[\boldsymbol{\nabla}\boldsymbol{n}_z + \boldsymbol{C}_T \boldsymbol{\nabla}\boldsymbol{T}_z + \boldsymbol{C}_P \boldsymbol{\nabla}\boldsymbol{q}]$$

- Flat impurity temperature profile
- Curvature drift artificially switched off

Scan in mass (A) and charge (Z) of impurities

- Dependency depends on the nature of dominant instabilities :
 - TEM \rightarrow Diffusion \uparrow as Z \uparrow
 - TIM \rightarrow Diffusion \downarrow as Z \uparrow
- Weak dependency on A (diffusion ↓ slightly as A ↑)
- Qualitative agreement with quasi-linear theory

[Gravier PoP'19]

11/14

Thermo-diffusion brings impurities inwards in TEM turbulence, but outwards for TIM

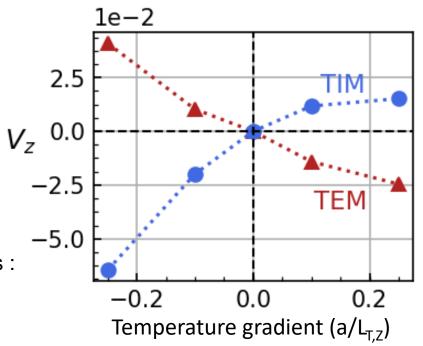
Isolating thermo-diffusion

- Curvature drift artificially switched off
- Impossible to maintain flat
 impurity density gradient
 - \Rightarrow impurity density gradient such

that
$$\Gamma_z = 0$$
, then $V_z = D_z \frac{\nabla n_z}{n_z}$
obtained from density scan

Scan in temperature gradient

• For standard sign of impurity temperature gradient, thermodiffusion transport impurities :


 $\mathsf{TEM} \rightarrow \mathsf{inwards}$

 $TIM \rightarrow$ outwards

Scan in charge number

• The coefficient $C_T \downarrow$ as Z \uparrow

$$\Gamma_{z} = -D_{z} [\nabla n_{z} + C_{T} \nabla T_{z} + C_{P} \nabla q]$$

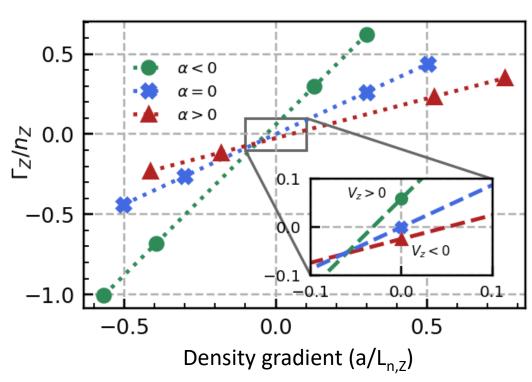
= $-D_{z} \nabla n_{z} + n_{z} V_{z}$

[Lim PPCF'20]

Curvature pinch is inward except for reversed magnetic shear

Isolating curvature pinch

- Flat impurity temperature profile
- Focus near zero impurity density gradient

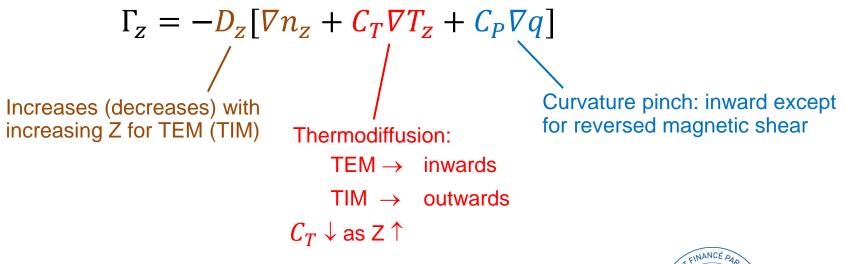

Role of magnetic shear

- Reversed magnetic shear can change
 the sign of precession frequency
- Artificial coefficient α in front of $\omega_{d,Z}$ to model this effect

Scan in density gradient

 Curvature pinch is inward except for reversed magnetic shear

$$\Gamma_z = -D_z [\nabla n_z + C_T \nabla T_z + C_P \nabla q]$$


[Lim PPCF'20]

Summary

Scan in impurity concentration

- TEM growth rate and turbulence intensity decrease with increasing tungsten concentration, linearly for concentrations below 5.10⁻⁴
- For turbulent transport of W⁴⁰⁺, passive treatment valid for C_W <2.10⁻⁴

Parametric dependencies of impurity transport

Acknowledgements

- Agence Nationale de la Recherche, project GRANUL (ANR-19-CE30-0005)
- Euratom research and training programmes, Grant Agreement No. 633053, project WP17-ENRCEA-02
- CINECA Marconi (projects GSNTIT and GSNTITS), EXPLOR (project 2017M4XXX0251), IDRIS