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• Transport and turbulence properties with X-point, 3D disturbed magnetic
equilibrium (reminiscent of RMPs), and with negative triangularity à a
relatively unexplored domain in numerical global simulations of plasma
edge

• Full 3D fluid turbulent simulations with TOKAM3X [1].
• Changes in the fluctuations level, filaments dynamics, heat decay length

and heat flux peaks at the targets depending on the configuration.
• Some key experimental features are recovered: better understanding on

the edge plasma dynamics in relevant magnetic configurations for the
fusion operation

ABSTRACT

• Turbulence governs the transverse transport à heat exhaust.
• X-point plasmas and H-mode are needed to reach optimal conditions for

fusion.
à The X-point: a highly non-linear SOL dynamics governed by an

interplay of turbulence, background drifts, sources, and sinks
à The RMPs for controlling ELMs: their efficiency depends on different

conditions, and the understanding of their complex interaction with
the plasma remains a challenging task

à Negative triangularity: might be a solution to remain in L-mode, yet
still achieving sufficient confinement for ignition but requires
significant effort to be better understood.

• Progress in the last decade allow to simulate now realistic magnetic
geometries that 3D edge turbulence codes have only recently been
dealing with

BACKGROUND AND MOTIVATION

• A 3D two-fluid non-isothermal drift-reduced electrostatic model for
electrons and a single ion species based on the Braginskii’s closure [1].
• Flux driven simulations with flexible axisymmetric magnetic geometries

encompassing closed (CFR) and open (SOL) magnetic field lines (Figure 1).
• Typical grid resolution 64×512×64 in the (r, q, j)
• η∥(en0/B0)= 10−5 and D⊥=10−2(ρ2

Lωc) fixed in all simulations.

THE TOKAM3X MODEL

• Clear impact of the magnetic geometry on the plasma dynamics
• A dedicated effort on the numerical efficiency allows us to address now

more realistic configurations
• Very promising preliminary results recover some key experimental
findings in TCV diverted plasmas with negative triangularity and in 3D
transport simulations with ripple in WEST.

CONCLUDING REMARKS
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Figure 1: 3D TOKAM3X simulation in limited configuration. RMP coils in yellow.
Density (on the left) and electron temperature (on the right) fluctuations.

THE RMPs IMPACT
𝐴 = Ψ!(1 + 𝜀!)∇𝜑+Ψ"∇𝜃 where 𝜀!(𝜓, 𝜃, 𝜑) ≪ 1 and 𝜀! = 10#$𝑎 sin(𝑚𝜃 − 𝑛𝜑)
• A pump-out of the electron density (about 20%)
• Drop of the amplitude of the radial electric field inside the separatrix [6].
• Turbulence properties are only moderately impacted

NEGATIVE TRIANGULARITY IMPACT
An analytical equilibrium R = R0 +r(cos(θ) +sin-1(δ)sin(θ)) and Z = r sin(θ) 
with triangularity δ scanned from 0.5 to -0.5.
• In the configuration with a bottom limiter (non constant limiter wetted

area): of (N, Te) decay lengths + of the heat load peak value
• In the configuration with a HFS limiter (constant limiter wetted area): no

impact is observed
• In more realistic TCV diverted plasmas: SOL turbulence level +

steepening of average profiles in SOL for δ < 0. Favorable distribution of
the particle flux (Figure 4) with of the wetted area on the divertor
targets for δ<0.

à Geometrical changes with δ seem to dominate here the pure effects of
changing δ.

Figure 2: Zoom on the
turbulent structures in the
divertor. Simu (left),
MAST [5] expe (right). The
red line on the outer
divertor leg delimits the
quiescent zone.

Figure 3: Temporal evolution of the
particles content in the tokamak
depending on the perturbation. Non-
isothermal simulations with (particle
source at the limiter) or without (source
at the core) recycling.

MOST SIGNIFICANT OUTCOMES

X-POINT IMPACT
• Poloidal gradients + a quasi-empty and cold private flux region (PFR)

lead to large amplitude steady-state radial ExB flows around the X-point:
main contributors to the spreading of particles fluxes into the PFR [2].

• Filaments:
à get strongly elongated in r due to the flux expansion introduced by

the X-point (Figure 2)
à disconnect from the target in the near SOL due to the magnetic + the

poloidal shear of the ExB radial velocity around the X-point while they
reconnect in the far SOL: lead to different radial velocity scaling [3]

Figure 4: TCV diverted
plasma configuration.
Radial distributions of
particle fluxes on
divertor targets for
d>0 and d<0.

• TOKAM3X diverted simulations exhibit a mild transport barrier around
the separatrix induced by the magnetic shear [4].


