ID: 825, TH/P7-7 **Quasilinear Turbulent Particle and Heat Transport Modeling with Development** of Unique Saturation Rules for Insights into Profile Formation Mechanisms E. Narita¹, M. Honda², M. Nakata^{3,4}, M. Yoshida¹ and N. Hayashi¹ ¹National Institutes for Quantum and Radiological Science and Technology, ²Kyoto University, ³National Institute for Fusion Science, ⁴The Graduate University for Advanced Studies OIFS narita.emi@qst.go.jp **G**QS'

Abstract

- •A novel quasilinear turbulent transport model DeKANIS has been constructed, which is suitable to investigate formation mechanisms of density and temperature profiles.
- DeKANIS predicts turbulent particle and heat fluxes quickly with machinelearning techniques.
- •While the original model covered only particle transport and determined a turbulent saturation level based on experimental particle fluxes [Narita

Density and temperature profile predictions with NN models

- Training and validation data:
- ~7,000 data points
- Experimental data with large errors has been eliminated.
- $\overline{\chi}_{e}$ is calculated not to break the Onsager symmetry.

NF2019], the capability has been extended to cover both particle and heat transport, and a new saturation rule has been introduced, which offers potential for applying to different devices and improves the prediction accuracy.

Background

•Some transport models (e.g. TGLF and QuaLiKiz) have been used to predict the density and temperature profiles, but they require high computational costs.

A neural-network (NN) based approach has been undertaken, resulting in a ~10⁵-fold acceleration of the calculations. (e.g. TGLF-NN [Honda] PoP 2019, Meneghini NF 2017], QuaLiKiz-NN [van de Plassche PoP 2020])

•The existing models are hard to use to investigate relationship between profile formation and transport processes.

Key features of DeKANIS

- •The training dataset is based on a combination of the gyrokinetic code GKW calculations and JT-60U experimental data.
- •DeKANIS predicts particle and heat fluxes, considering the diagonal and off-diagonal terms individually.

Saturation rule: A

RMSE =

After optimizing hyperparameters and activations functions, density and temperature profile predictions have been realized.

Potential for applying to other devices

•Saturation rule A may increase the accuracy within the known parameter range by learning the experimental value directly.

•However, it cannot guarantee the validity of the predictions outside the known parameter range.

Quasilinear transport modeling and saturation rules

• Electron particle and heat fluxes:

 $\overline{\Gamma}_{e} = \overline{D} \left(\frac{R}{L_{n_{e}}} + C_{T} \frac{R}{L_{T_{e}}} + C_{P} \right)$ $\bar{Q}_{e} = \bar{\chi}_{e} \left(C_{N} \frac{R}{L_{n_{e}}} + \frac{R}{L_{T_{e}}} + C_{HP} \right)$ C: Off-diagonal term coefficients $\propto (\tilde{\phi} - v_{\parallel} \tilde{A}_{\parallel})^2$: The turbulent fluctuation amplitude • Ion heat flux: $\bar{Q}_{i} = \frac{\bar{\chi}_{eff,i}}{\bar{\chi}_{eff,e}} \bar{\chi}_{eff,e} \frac{R}{L_{T_{i}}} \frac{n_{i}}{n_{e}} \frac{T_{i}}{T_{e}} \Big|$

- Predicting diagonal and off-diagonal terms individually can be helpful to understand profile formation mechanisms.
 - $C_{T.P.N.HP}$ are given by linear calculations with the gyrokinetic code GKW [Peeters CPC2009].
 - The off-diagonal terms satisfies the Onsager symmetry: $\bar{\chi_{e}} = \overline{D} \frac{C_{\mathrm{T}} + 3/2}{C_{\mathrm{T}}}$.

• The 7 coefficients are estimated for the plasma parameters taken from JT-60U 23 Hmode plasmas [Takenaga NF2008], and the results are used as NN training data.

- NB injection without gas puffing
- $I_{\rm P}/B_{\phi} = 1$ MA/2.0-2.2T
- Positive magnetic shear -
- ITG or ITG/TEM modes ($0.3 \le \rho \le 0.65$)

A. Semi-empirical saturation rule [Narita NF2019, IAEA FEC 2018]

 $\succ \overline{D}$ is estimated to match $\overline{\Gamma}_{e,turb}^{exp}$ that satisfies $\overline{\Gamma}_{e,NB} + \overline{\Gamma}_{e,neo} + \overline{\Gamma}_{e,turb} = 0$.

B. Mixing-length-like saturation rule: newly introduced

> Turbulence: linear instability • $\overline{\gamma}/\overline{k}_{\theta}^2$ calculated at \overline{k}_{θ} with $\overline{\gamma}_{max}$

- The JET data have been taken from the ITPA International N: the number of plasmas Multi-Tokamak Profile Database.
- $I_{\rm P}/B_{\phi} = 0.96-3.2 \,{\rm MA}/1.1-3.1 \,{\rm T}$
 - Saturation rule B has a better accuracy for the JET plasmas.

•The NN model of Saturation model B is separated from the experimental values, and has learned only the GKW results.

 \rightarrow It is easy to expand the applicable plasma parameter range.

Dependence of prediction trends on the saturation models

•Saturation rule A tends to overestimate the temperature of JT-60U plasmas because the saturation level is determined based on $\overline{\Gamma}_{e,turb}^{exp}$.

Mean offsets of predicted density and temperature for 14 JT-60U test cases

> Zonal flows: linear zonal flow response

[Narita PPCF2018]

• The linear zonal flow response function [Rosenbluth PRL1998]:

 $K_{RH} = 1/(1 + 1.6q^2/\epsilon^{1/2})$

• The residual zonal flow level: $L_{ZF} \equiv K_{RH} (\bar{\gamma}/\bar{k}_{\theta}^2)^{0.5}$

representing the zonal flow potential [M. Nunami PoP2013]

 $\blacksquare \alpha$ and β are optimized with Genetic algorithm against two different \overline{D} .

(1) $\overline{D}_{\overline{\Gamma}_{a}}$: estimated to match $\overline{\Gamma}_{e,turb}^{exp}$ (2) $\overline{D}_{\overline{O}_{o}}$: estimated to match $\overline{Q}_{e,turb}^{exp}$ that satisfies $\overline{Q}_{e,source} + \overline{Q}_{e,equi} + \overline{Q}_{e,rad} + \overline{Q}_{e,rad}$ $\overline{Q}_{e,neo} + \overline{Q}_{e,turb} = 0.$

✓ The two scaling formulas show similar effects of instabilities and zonal flows. \checkmark The inclusion of $\bar{Q}_{e,turb}^{exp}$ increases coef.

Base	α	β	coef [10 ⁻⁴]
(1) $\overline{\Gamma}_{e,turb}^{exp}$	1.1008	-2.8024	1.6996
(2) $\bar{Q}_{\rm e,turb}^{\rm exp}$	1.1990	-2.4732	7.8584

- $\bullet \alpha > 0$: turbulence enhancement due to instabilities
- $\beta < 0$: turbulence suppression due to zonal flows

✓ Temperature overestimation has been reduced due to inclusion of $\bar{Q}_{e,turb}^{exp}$.

Future work

- > The validity of the mixing-length-like saturation rule will be checked.
- Inconsistency between \overline{D}_{Γ_e} and \overline{D}_{Q_e} means that $\overline{Q}_e/\overline{\Gamma}_e$ calculated by the quasilinear theory does not match the experimental value.
- Weak dependence of \overline{D} on $\overline{\gamma}/\overline{k}_{\theta}^2$ contradicts the well-known mixinglength rule.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Number 20K14450 and MEXT as "Program for Promoting Researches on the Supercomputer Fugaku" (Exploration of burning plasma confinement physics; hp200127) and used computational resources of FX100 provided by Nagoya University. This work was also carried out using the JFRS-1 supercomputer system at Computational Simulation Centre of International Fusion Energy Research Centre (IFERC-CSC) in Rokkasho Fusion Institute of QST (Aomori, Japan).

