Ion heating and energy balance during magnetic reconnection events in the RFX-mod experiment

M.Gobbin^{1,2}, M.Agostini^{1,2}, F.Auriemma^{1,2}, L.Carraro^{1,2}, R.Cavazzana¹, A.Fassina^{1,2}, P.Franz¹, L.Marrelli^{1,2}, B.Momo¹, R.Piovan^{1,2}, I.Predebon^{1,2}, M.E.Puiatti^{1,2}, G.Spizzo^{1,2}, D.Terranova^{1,2}, M.Zuin^{1,2}

> ¹Consorzio RFX– CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA, Padova, Italy ²CNR-ISTP, Corso Stati Uniti 4, Padova, Italy

> > marco.gobbin@igi.cnr.it

ABSTRACT

- Reconnection events in high current reversed field pinch plasmas are often associated to the partial or total transitions from a helical topology with conserved flux surfaces to a configuration characterized by a chaotic magnetic field.
- The electron temperature dynamic together with the magnetic energy reconstructions are used to evaluate the energy balance during these events and to quantify the associated dissipated power and released energy.

ENERGY BALANCE DURING RECONNECTION EVENTS

Variation of magnetic energy with plasma current and secondary modes.

ID: EX/P7-2

Electron thermal energy variation. dissipated during reconnections.

• A fraction of the energy released during reconnection events is involved in ion heating, as estimated by the energy distribution function of neutral atoms, a rather interesting feature in a reactorial perspective.

BACKGROUND

- The analyses reported are relative to RFX-mod¹ ($R_0=2m$, a=0.459m) with: $I_p=1.2-2MA$, n/n_G=0.1-0.2, reversal parameter $F=B_T(a)/\langle B_T \rangle$ in the range [-0.1,-0.01].
- Helical equilibrium at high current (QSH Quasi Single Helicity): the innermost resonant mode (m=1,n=-7 with amplitude b_7) grows while the other harmonics (secondary modes with amplitude b_s) decrease².
- Electron Internal Transport Barriers (eITBs) build up during helical states.
- Partial/total interruptions of helical states and back transitions to chaotic regimes (MH-Multiple Helicity) are associated to reconnection events.

(kJ)

150

- ΔU_s is of the order of ΔW_M both in major and minor reconnection events.
- The presence of plasma-wall interaction could lead to a very localized increase of radiation and of thermal load not taken into account in the computation since the diagnostics might be in the wrong position to detect these phenomena.

m=1 secondary modes

-0.4 -0.2 0.0 0.2 0.4 r(m)

¹L.MARRELLI et al. Nucl.Fusion **61** (2021) ²S.CAPPELLO et al. this conference TH/P7-12

PHENOMENOLOGY OF RECONNECTION EVENTS

• Main magnetic features of QSH-MH total and partial back-transitions:

Loss of helical state can be total (major crash- t_3) or only partial (minor crash- t_1 , t_2); in the latter cases the W_m decay is minor (t_1) or absent (t_2) and the same for m=0 variation.

Reconnection starts at the locking position and is followed by a fast growth of m=1 (core region) and then of m=0 (edge region) modes³.

• Electron temperature evolution and NPA data during reconnection events:

828

642

2 _[eV]

t - t_{reconnection} [ms]

-0.02

-0.03

-0.05

-0.06

300

ခြီ 250

흥 200

001 Q Q

150

50

ட -0.04

Flattening of T_e profiles during both minor ($\Delta T_e/T_e \sim -30\%$) and major F crash ($\Delta T_e/T_e \sim -60\%$).

electron decrease the temperature often begins ~ 1 ms before the minimum of F.

• If $\Delta U_s = 3/2$ n $<\Delta T_i > V \rightarrow <\Delta T_i > \cong 1 \text{ keV}$ for $\Delta U_s = 10 \text{ kJ}$ (assuming only a conversion into thermal energy).

⁵P.SCARIN et al. Nucl.Fusion **59** (2019) ⁶M.AGOSTINI et al. Rev. Sci. Instrum. **81** (2010)

ION TEMPERATURE PROFILE DYNAMICS FROM NPA DATA

- The numerical neutral thermal outflux Γ_{num} is computed by the code NENE⁷ using the experimental T_e, n_e, wall particle influx, Z_{eff} ; the associated $T_i(r)$ profile is adjusted in order to minimize ε , the relative difference with the thermal region of the NPA spectrum Γ_{exp} : $\varepsilon = \Sigma |\Gamma_{num} - \Gamma_{exp}|/$ $(N\Gamma_{exp})$, being the sum over the N NPA channels.
- Before the crash $T_i \sim T_e$ whereas just after the crash (+0.5ms) T_e decreases; on the contrary T_i increases in r/a<0.6 with $\Delta T_i(0)$ =+250eV (ion heating mechanism in the core region). At t=+3ms after the event the T_i profile decreases.
- $\Delta U_{\text{th,i}}=0.5\text{KJ} < \Delta U_{\text{s}} = 5-10\text{KJ}$ in these I_{p} and n/n_{G} ranges \rightarrow a large fraction of released energy probably related to the suprathermal ion component and electrons acceleration.

CONCLUSIONS

• A large fraction of the input power (30-50%) is dissipated during reconnections in RFX-mod; in parallel the electron thermal energy is reduced significantly (-30%).

Different dynamic of T_e during the reconnection complete event: profile flattening or increase in the edge region.

Neutral Particle Analyzer (NPA): estimates T_i from the distribution function of neutral atoms.

> a clear increase of T_i when the reconnection occurs in the region observed by the NPA diagnostic, between ϕ =250° and ϕ =300°.

the energy distribution of the neutrals from NPA is characterized by a maxwellian bulk population (up 2 keV) plus a high energy tail (3-8keV)

' 0.10 آ ت. اع ЩР/ЦР 0.01

³B.MOMO et al. Nucl.Fusion **60** (2020) ⁴P.FRANZ et al. Nucl.Fusion **53** (2013)

• By a power balance technique the quantity of energy possibly involved in particle acceleration/ion heating has been estimated in the range 10-200kJ, of the order of the magnetic energy decay during a reconnection event.

• Experimental measurements from the NPA diagnostic show an increase of $\Delta T_i \approx 250 eV$ in the core region; the corresponding ion thermal energy variation (~0.5kJ) is much lower than the magnetic energy released thus suggesting that suprathermal ion heating and electron acceleration mechanisms are dominant.

• Strong relevance of ion heating in a reactorial perspective, new campaigns planned in the modified RFX-mod experiment⁸, in operation from the mid of 2022. ⁸L.Marrelli et al. Nucl. Fusion. 59 (2019)

ACKNOWLEDGEMENTS

This work has been partly supported by the EUROfusion Consortium and the EURATOM research and training programme 2019-2020 under Grant Agreement No. 633053