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0. ABSTRACT

Acceleration of Impurity Ion rotation Is observed during the internal Comparison of two IRE discharges with different rotation tendency
reconnection event (IRE) in Versatile Experiment Spherical Torus. By utilizing e Shot#31660 m Shot#31350

lon Doppler Spectroscopy (IDS) with high temporal resolution ~0.2 ms ol el e T Ui
acceleration of impurity ion toroidal rotation in the opposite direction of the I | e e S B B
plasma current as well as ion heating are observed during the IREs. We also T
find that increase time of the two phenomena are a litter different. The results \ | ® Z\\ T ®]  Coissiana m the Snovatso :Js(é)ﬁg(gr;;z”
suggest that different mechanism act on the ion during the IRE. It is though g T — P modes bofore the IRE £l oREmedenst

that ions are accelerated due to a neoclassical viscous torque based on -
several reasons rather than other mechanisms such as reconnection out flow T n S N B
and toroidal electric field. We compare the experimental results to 0D simple
torque balance model with NTV torque and the model results are well
agreement with the experimental results.
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- Arelaxation phenomena which occurs frequently in spherical torus SN V_,.._..g-ii)’ BT PYILY (E) Lockig features? H

» Mechanism research [1-3], Change of various plasma parameters [1-8] IEEERRE S EEEL AREEEEEEE R

 Lack of studies about relationship between the plasma rotation and IRE IRE discharges with two different rotation tendency: (Left) N e & kM & om
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Interaction between MHD instabilities and plasma rotation ; (Right): Sho [a-€]

* Enhancement of MHD stability with plasma rotation and its shear [9-13]
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Possible candidate mechanisms for rotation acceleration
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Parametric scan for 0-D momentum balance model with NTV torque and
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good agreement with the measurement

% Conclusion
= Significant toroidal rotation change as well as ion heating are observed when IRE occurs
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