Plasma current ramp-up with 28 GHz second harmonic electron cyclotron wave ID: 844 in the QUEST spherical tokamak

T. ONCHI¹, H. IDEI¹, M. FUKUYAMA¹, D. OGATA¹, T. KARIYA², A. EJIRI³, K. MATSUZAKI³, Y. OSAWA³, Y. PENG³, R. ASHIDA¹, S. KOJIMA¹,
 K. KURODA¹, M. HASEGAWA¹, R. IKEZOE¹, T. IDO¹, K. HANADA¹, A. HIGASHIJIMA¹, T. NAGATA¹, S. SHIMABUKURO¹, I. NIIYA¹,
 K. NAKAMURA¹, N. BERTELLI⁴, M. ONO⁴, Y. TAKASE³, A. FUKUYAMA⁵, S. MURAKAMI⁵
 ¹Kyushu University, ²University of Tsukuba, ³The University of Tokyo, ⁴Princeton Plasma Physics Laboratory, ⁵Kyoto University

onchi@triam.kyushu-u.ac.jp

ABSTRACT

- •Through oblique injection of the electron cyclotron wave (ECW), the observation presents that the highest level of plasma current l_p as non-inductive EC ramp-up is attained with small loop voltage, $l_{loop} < 0.1$ V. The auxiliary ohmic heating (OH) increases l_p by 30-40 %. Energetic electrons have main roles to generate the current and maintain the equilibrium pressure.
- As a result of quasi-normal beam injection and finely adjusted gas fuelling, bulk electrons are heated efficiently, and hence the electron temperature reaches $T_{\rm e} > 500$ eV at the density $n_{\rm e} \sim 1 \times 10^{18}$ m⁻³ with the incident RF power of no more than 150 kW.

OUTCOME

ECH CHARACTERISTICS with DIFFERENT N//

- ✤ T_e and n_e through the Thomson scattering measurement
- Data obtained in 2020 (44030 45119)
- Data filtered by
 - max P_e | (t < 3.0 s) & (T_e > 5 eV) & (|I_p| > 20 kA) & (σ_{Te} < 50 eV) & (n_e > 1×10¹⁷ m⁻³)
- High $T_{\rm e}$ with $|I_{\rm p}| < 40$ kA + low $N_{//}$
- High /_p, but low T_e with high N_{//}
 n_e may weakly depend on /_p
 P_e decreases logarithmically with /_p value
 Energetic electrons own the equilibrium pressure (P_e = 200-300 Pa) when /_p is high

BACKGROUND

- Plasma current ramp-up experiment by 28 GHz-ECH has been explored in the QUEST spherical tokamak^{*1,2}. Multiple harmonic resonance layers (2nd – 4th) locate in the plasma confinement region.
- Oblique EC wave injection : With high refractive index parallel to magnetic field, $N_{//}$, energetic electrons moving forward along the magnetic field resonate more effectively than those moving backward. Such symmetry breaking is consistent with the results of the current ramp-up experiment ($I_p > 70$ kA by ECH)*³.

Resonance ellipses and constant velocity circles in velocity space with respect to the second resonance.

AUXILIARY OHMIC HEATING and MODULATION of LOOP VOLTAGE

- Oblique ECW Injection:
 - Loop voltage applied after EC current ramp-up
 - $I_p > 100$ kA achieved
 - $l_{\rm p}$ increases by 30-40 % with the medium $V_{\rm loop}$ (< 0.5 V)
- Quasi-normal Injection:
 - Modulation of the central solenoid current
 - \rightarrow Change of V_{loop} , thus E_{ϕ}
 - → $T_{\rm e} \approx 830 \, {\rm eV}$

Typical discharge waveforms. Current is ramped up through the 28 GHz-ECH. ECW is injected obliquely as $N_{//} = 0.75$.

-2 - 1 keV -2 - 10 keV -30 keV -30 keV -60 keV -0.3 0.4 0.5 0.6 0.7 0.8 *R* [m]

Major radial dependence of u_{\parallel}/u_{\perp} on particle energy. Particles whose energy of 1 keV (black), 10 keV (blue), 30 keV (green), and 60 keV (red) satisfy resonance conditions at u_{\parallel}/u_{\perp}

RF INJECTION USING STEERING ANTENNA

BULK HEATING THROUGH QUASI-NORMAL ECW

INJECTION

Plasma current is ramped up

A top view of QUEST. The second, third, and fourth harmonic resonance layers are shown by red, green, and blue half circles, respectively. Waveforms of the discharge 40527: (a)the 28 GHz-RF power monitor signal, (b) I_{pr} , (c) V_{loopr} , (d)line-integrated n_e . (e) Two-dimensional map of magnetic flux surfaces, obtained by an equilibrium reconstruction, with $I_p = 100$ kA. (f) E_{ϕ} , measured at R = 0.18 m, vs I_p .

The waveforms of discharge 41194: (a)plasma current I_p , electric field E_{ϕ} at R = 0.18 m. (b) H_{α} line emission with gas injection timing. (c) Electron temperature and density measured at R = 0.40 m through Thomson scattering.

CONCLUSION

- to $l_p \approx 25$ kA. Loop voltage is as low as $V_{loop} \approx 0.1$ V measured on the central post, R = 0.18 m
- Hard X-ray (HXR) pulse signal counted by Cadmium Telluride detector is also observed concurrently with plasma ramp-up.
- The RF power is absorbed in both bulk and energetic electrons effectively, therefore moderate current drive and bulk electron heating occur simultaneously.

The waveforms of discharge through quasi-normal ECW injection

The ECH in QUEST, with multi-harmonic resonances in the core region, is characterized by parallel refractive index N_{//} of ECW
Bulk heating occurs with low N_{//}. The highest T_e is obtained with E_φ-modulation.
High /_p is realized with high N_{//}, but pressure of bulk electrons decreases obviously. The equilibrium pressure is maintained by the energetic electrons. /_p > 100 kA has been achieved by auxiliary ohmic heatings.

ACKNOWLEDGEMENTS / REFERENCES

The authors are most thankful to the QUEST team for technical support. This work was performed under the auspices and support of the NIFS Collaboration Research Programs (NIFS19KUTR136/NIFS17KUTR128). This research was partially supported by the Ministry of Education, Science, Sports and Culture, under Grant-in-Aid for Scientific Research (B) (No. 15H04231).

*1 : H. Idei *et al.*, Nucl. Fusion 57 (2017) 126045.
*2 : H. Idei *et al.*, Nucl. Fusion 60 (2020) 016030.
*3 : T. Onchi *et al.*, Phys. Plasmas 28 (2021) 022505.
*4 : H. Idei *et al.*, Fusion Eng. Des. 146 (2019) 1149.

