Impact of pedestal operation modes and machine design on the divertor heat flux width scaling

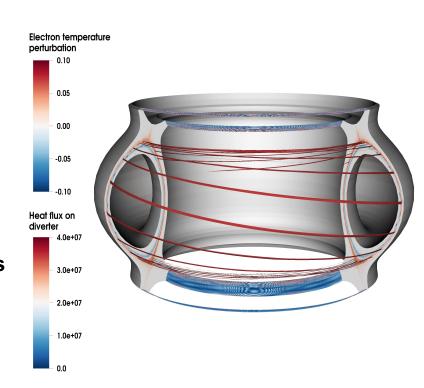
X.Q.Xu¹

Lawrence Livermore National Laboratory in collaboration with

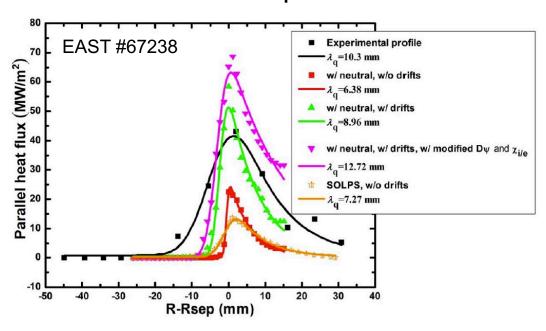
N. M. Li², X. H. He^{1,2}, X.Y. Wang³, Z.Y. Li^{4,5}, P. B. Snyder⁵, G. Z. Deng^{6,7}, T. T. Tang^{6,7}, B. Zhu¹, N. Yan⁷, T.Y. Xia⁷

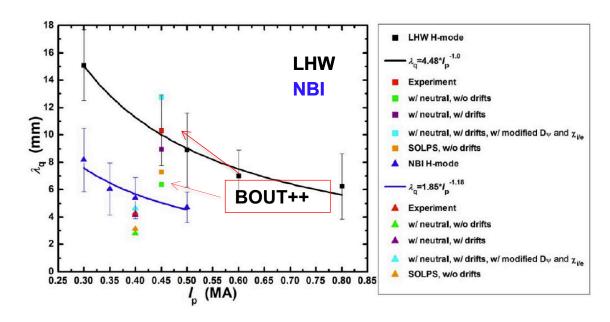
¹LLNL, ²DLUT, ³PKU, ⁵ORAU, ⁵GA, ⁶SZU, ⁴ASIPP,

Presented at 28th IAEA Fusion Energy Conference Virtual (FEC 2020) May 10-15, 2021



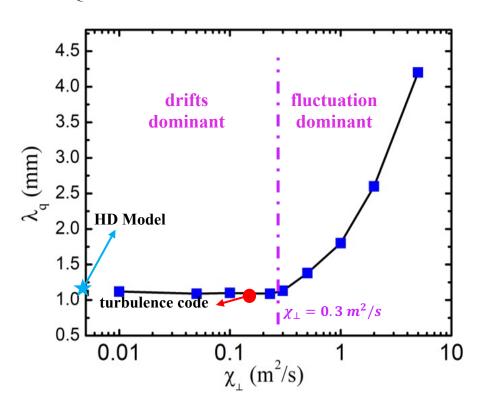
Principal Activities

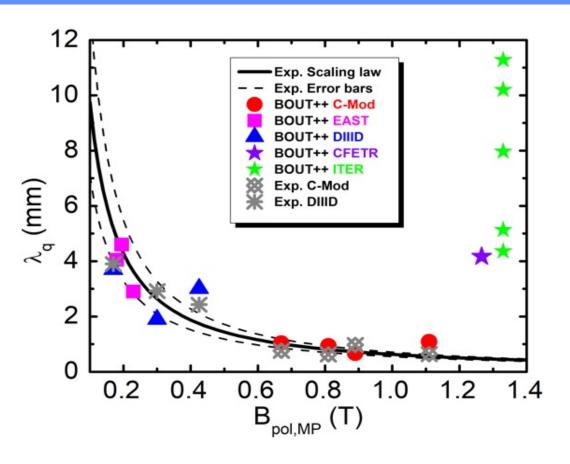

- A suite of two-fluid multiple-field models has been updated in BOUT++ with
 - flux driven sources from core plasmas
 - zonal flow & zonal field
 - √ 3D field solver to remove high-n ballooning approximation
 - Landau-fluid closures for parallel non-local transport
 - o being refactored and optimized on hybrid CPU-GPU architectures
- A suite of gyro-fluid models is also developed for
 - pedestal kinetic turbulence and transport
 - ✓ Developing ML surrogate models for kinetic closures
- A transport model with all drifts has been implemented in BOUT++ for
 - o Initial 2D plasma profiles & Er across separatrix for turbulence simulations
 - Coupling turbulent & transport
- Neutral & Impurity models for
 - SMBI, GAS puffing, Recycling
 - Pellet injections for fueling, ablation & ELM control & detachment
- A test particle module for
 - Impurity and dust-particle migration and transport
 - Modelling of alpha particle slowing down for burning plasmas


BOUT++ Simulation of Divertor Heat Flux Width on EAST

Comparison of divertor heat flux and its width between simulations & experiments

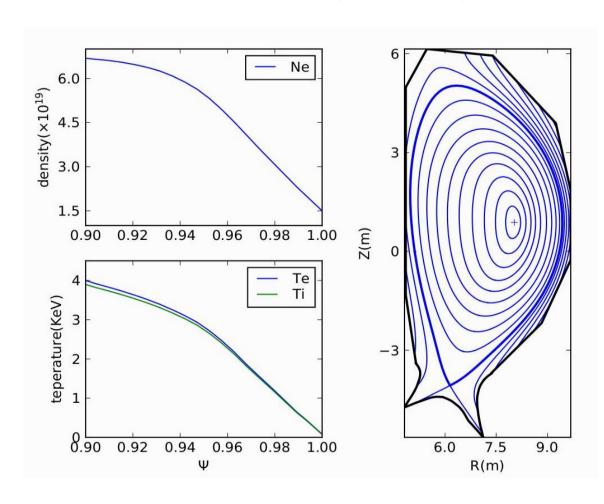
Comparison of divertor heat flux width between simulations & experiments for LHW and NBI heating


- Simulated two EAST discharges of the steady-state H-mode plasmas heated by low hybrid wave (LHW) and neutral beam (NB)
- Both the amplitude and width of the divertor heat flux are found to increase significantly by including drifts
- Simulated heat flux width w/ drifts for the two discharges shows reasonable agreement with the experiments
- Width from the simulation and experiment for the LHW is much larger than that of the NB heated discharge.
 - Turbulence may have played a more important role in LHW heated discharges
 - The magnetic topology and the equilibrium may be changed


Deng, Xu, Li, et al., *Nucl. Fusion* 60 (2020) 082007 T. Y. Xia, et al, *Nucl. Fusion* **59** (2019) 076043

BOUT++ simulations predict that the divertor heat flux width of ITER & CFETR baseline target is broadened by ELMs

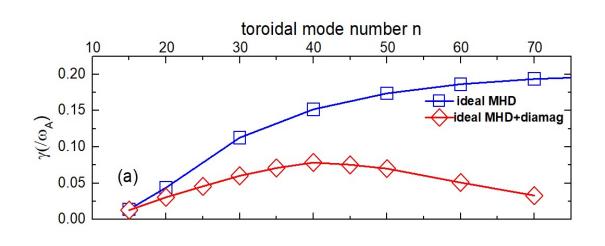
X.Q. Xu et al 2019 Nucl. Fusion **59** 126039



- When $\chi > \chi_{crit}$, radial transport transits from a drift to a fluctuation-dominated regime
 - o Bohm diffusion typically yields $\chi^{\rm Bohm} \gg \chi_{crit}$
- The divertor heat flux width is correlated with change in pedestal height

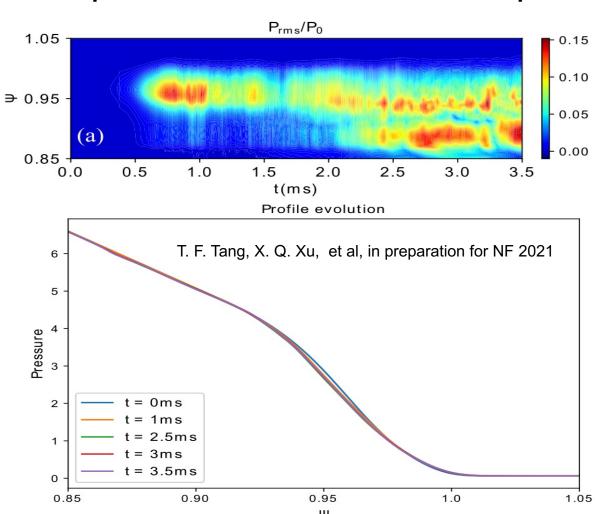
BOUT++ simulations performed for CFETR scenarios SSO: high β_p , high q95

Pedestal profiles and magnetic configuration

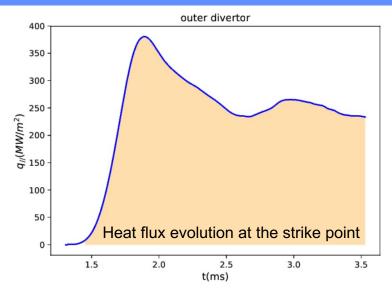

Parameters of current CFETR Steady State scenario

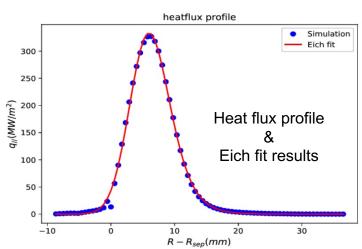
Parameters	CFETR Steady State Scenario	
R	7.2m	
а	2.2m	
К	2	
δ	0.42	
B_T	6.5T	
I_p	11MA	
$oldsymbol{eta}_N$	2.81	
$oldsymbol{eta}_p$	2.2	
q_{95}	7.34	
n_{sep}/n_{ped}	0.25	
$oldsymbol{ u}_*$	0.22	

Near ballooning criticality, pressure gradient relaxes very little in non-linear steady state



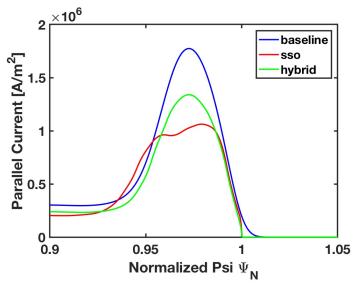
linear growth rate vs toroidal mode number

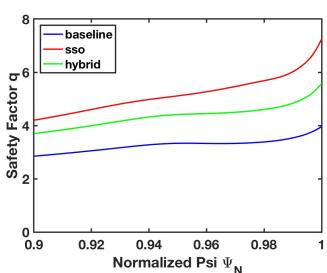

No large ELM collapses near the ballooning criticality, but large enough transport can be generated which broadens the SOL width


pressure fluctuation at the outer mid-plane

Divertor heat flux width broadening due to large electromagnetic fluctuation from the Grassy ELM

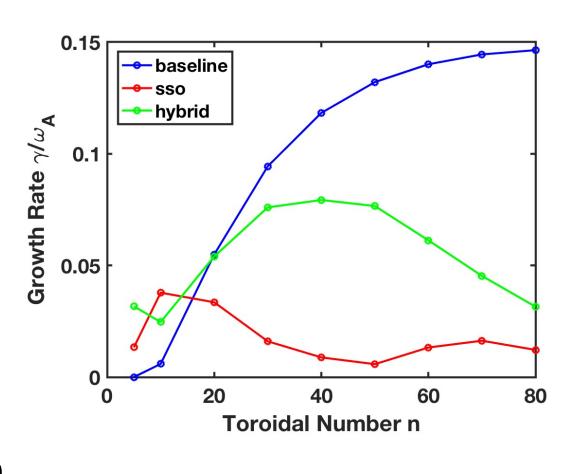
	formula	λ_q (mm)	λ_{int} (mm)
Simulation	/	2	8.33
Goldston HD model	$\frac{4a\sqrt{m_p T_{sep}/2}}{eB_p R} \frac{R < B_p >}{\left(RB_p\right)_{omp}}$	1.08	3.54
Eich Scaling law	$0.63B_{p,omp}^{-1.19}$	0.69	3.15
Eich turbulence	$0.59(1+3.6\alpha_t^{1.9})\rho_s$	1.17	3.63


$$\chi_e^{sep,omp} \approx 0.5 \, m^2/s > \chi_e^c \approx 0.2 m^2/s$$


T. F. Tang, X. Q. Xu, et al, in preparation for NF 2021

BOUT++ simulations also performed for ITER scenarios

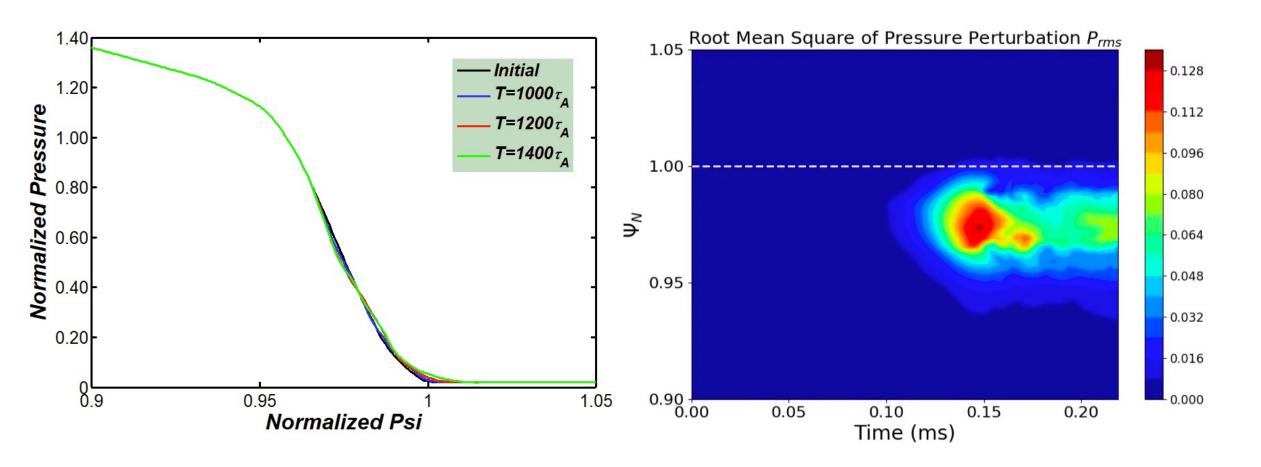
SSO shows lower pedestal pressure & bootstrap current, but high β_p , high q95



Baseline:

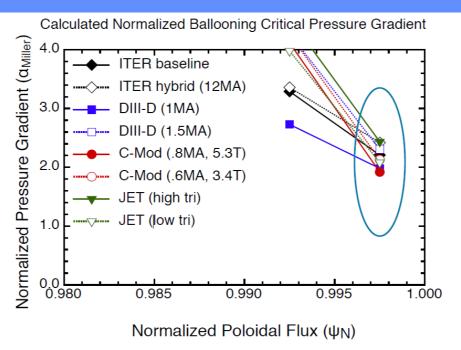
ballooning modes, most unstable toroidal mode numbers n=60~80

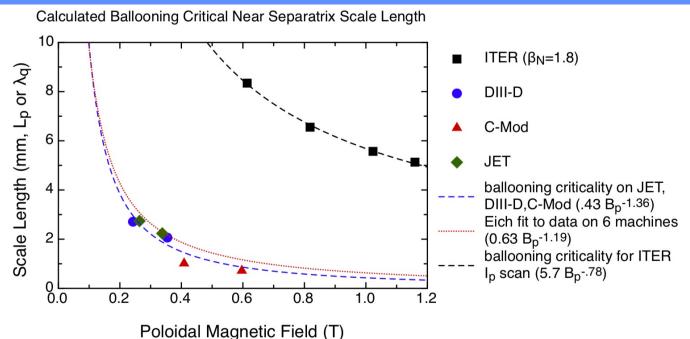
SSO: peeling modes, most unstable modes n=10~20


Hybrid: peeling-ballooning modes, most unstable modes n~40

X. Y. Wang, X. Q. Xu, et al, submitted to NF 2021

Near ballooning criticality, pressure gradient relaxes very little in non-linear steady state





No large ELM collapses near the ballooning criticality, but large enough transport can be generated which broadens the SOL width

BOUT++ simulated near-separatrix pressure gradient is consistent with ballooning critical gradient model (BC)

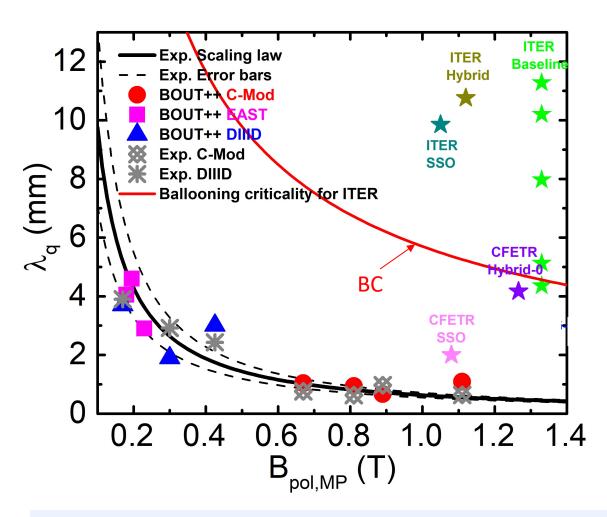
Pressure gradient should be marginally unstable for local ballooning mode near Separatrix

$$\alpha_{Miller} = -\frac{2\partial_{\psi} V}{(2\pi)^2} \left(\frac{V}{2\pi^2 R_0}\right)^{\frac{1}{2}} \mu_0 p' \sim 2.0 \qquad d\beta_p / d\psi_N \sim 2.5-3.5$$

For ITER baseline n_{sep} =3.7x10¹⁹/m³, $T_{e,sep}$ =175eV, $T_{i,sep}$ =300eV,

$$(dp/d\psi_N)_{crit} \sim 1.064 \langle B_p^{1.6} \rangle_{edge} \longrightarrow L_{p,crit} \sim 5\text{-6mm}$$

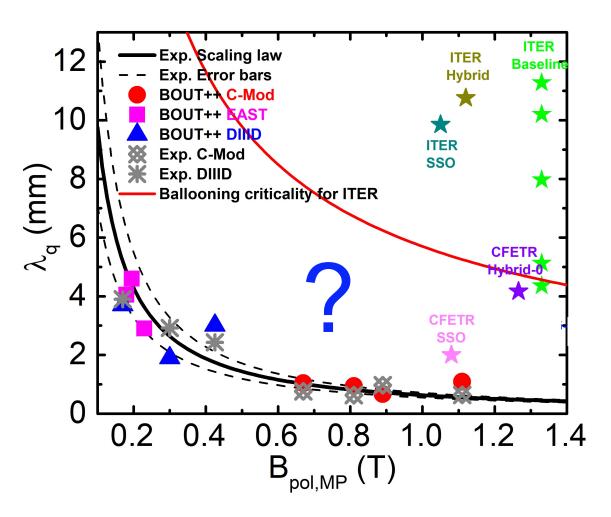
• In BOUT++, saturated near-separatrix pressure gradient scale length is consistent with the BC model


Philip B. Snyder. ITPA Pedestal and Div/SOL meeting, 2012.

X. Y.Y Wang et al, submitted to NF 2020

 $L_{p,crit}$ =P/(dP/dx)=7.3mm

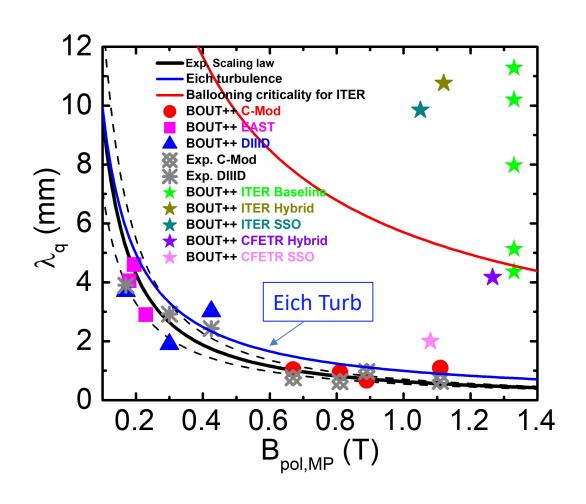
Ballooning-critical pressure gradient is consistent with BOUT++ simulated divertor heat flux width at reduced pedestal height near marginal stability boundary for ELMs


Near-Separatrix Ballooning criticality (BC) for ITER baseline target

$$\lambda_q = 5.7 \times B_{pol,MP}^{-0.78}$$

X.Q. Xu, N. M. Li, Z. Y. Li, et al. Nucl. Fusion 59 126039 (2019); Z. Y. Li, X.Q. Xu, N. M. Li, et al., Nucl. Fusion 59, 046014 (2019); X. Y. Wang et al., submitted to NF (2021)

What is about micro-turbulence broadening?


Near-Separatrix Ballooning criticality (BC) for ITER baseline target

$$\lambda_q = 5.7 \times B_{pol,MP}^{-0.78}$$

Collisionality broadening factor is very little for ITER

T. Eich et al., NF2020

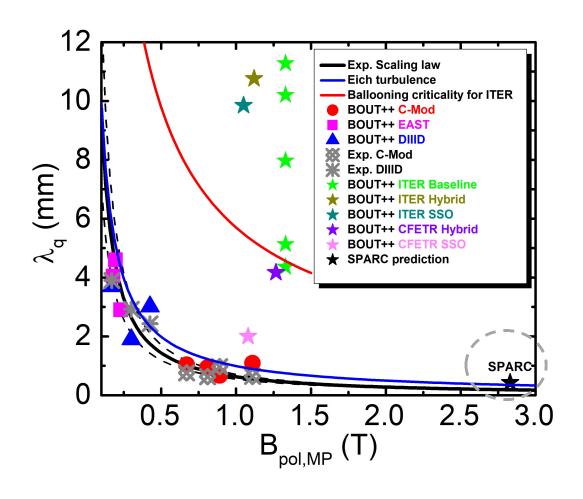
Eich turbulence regression:

$$\frac{\lambda_p}{\rho_{s,pol}} = (1 + (3.6 \pm 0.19)\alpha_t^{1.9 \pm 0.14}) \cdot (1.2 \pm 0.05)$$
$$\lambda_q \sim 0.5 \ \lambda_p = 1.986/B_{p,omp}$$

$$\alpha_t \simeq \frac{1}{100} \cdot \hat{q}_{cyl} \nu_e^* \qquad \qquad \nu_e^* = \frac{\pi \, \hat{q}_{cyl} R}{1.03 \cdot 10^{16}} \frac{n_e}{T_e^2} Z_{eff}$$

- Based on resistive interchange & drift Alfven turbulence
 - \circ v*=0 $\rightarrow \alpha_t$ =0, no turbulence broadening
 - \circ $\alpha_t > 0.5$, H \rightarrow L transition, a maximum of factor 2 broadening

Based on ITER baseline parameters


Low collisionality,

$$v_*^{ITER} \sim 1.8$$
 $\alpha_t^{ITER} \sim 0.02$

- Eich turbulence predicts a 0.27% width broadening
- GHD model predicts a 3.6% width broadening

Divertor heat flux will pose a significant challenge for SPARC

Eich turbulence:

$$\frac{\lambda_p}{\rho_{s,pol}} = (1 + (3.6 \pm 0.19)\alpha_t^{1.9 \pm 0.14}) \cdot (1.2 \pm 0.05)$$
$$\lambda_q \sim 0.5 \ \lambda_p = 1.986/B_{p,omp}$$

$$\alpha_t \simeq \frac{1}{100} \cdot \hat{q}_{cyl} \nu_e^* \qquad \qquad \nu_e^* = \frac{\pi \, \hat{q}_{cyl} R}{1.03 \cdot 10^{16}} \frac{n_e}{T_e^2} Z_{eff}$$

- Based resistive interchange & drift Alfven turbulence
 - \circ v*=0 $\rightarrow \alpha_t$ =0, no turbulence broadening
 - o α_t >0.5, H \rightarrow L transition

Based on SPARC baseline parameters

Low collisionality,

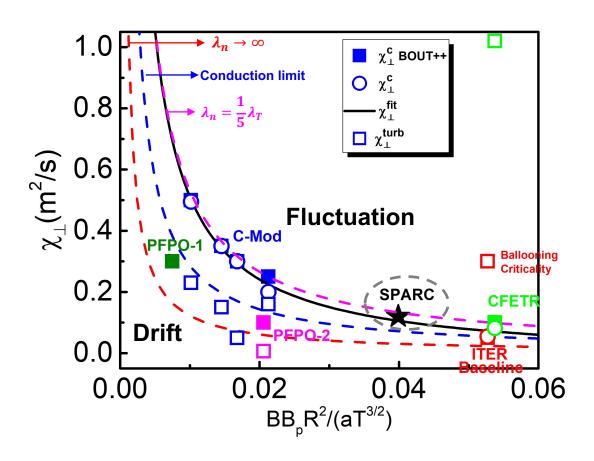
$$v_*^{SPARC} \sim 2.1$$
 $\alpha_t^{SPARC} \sim 0.05$

- Eich turbulence predicts a 1.2% width broadening
- GHD model predicts a 2.6% width broadening

Dominant parameters for the transition from drift to fluctuation dominant regime

• The effective thermal diffusivity χ^c_{\perp} from the magnetic drift-based radial transport can be estimated as:

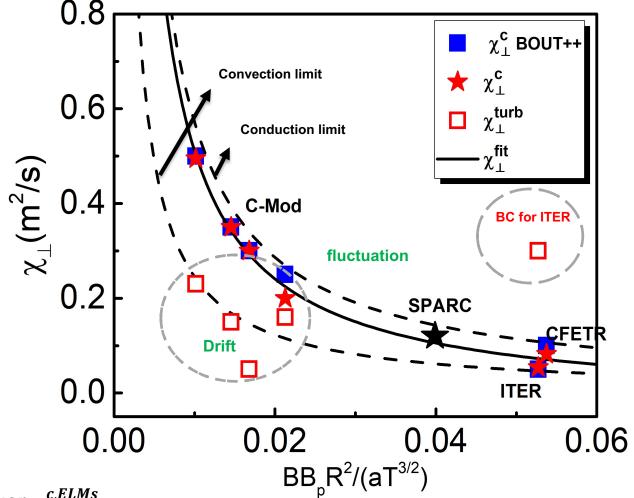
$$\chi_d^{eff} = v_d \lambda_q = \mathbf{C} v_d q \rho_s = \mathbf{C} \frac{A^{1/2}}{Z(1+Z^{1/2})} \frac{2T_{e,sep}^{3/2}}{BB_p R} \frac{m_p^{1/2}}{e^2} \frac{a}{R}$$


$$\chi_\perp^c = \chi_d^{eff} - D_\perp \left(\frac{\lambda_T}{\lambda_n}\right)$$

- C=26.5 is a fitting parameter to simulations for the transition
- \circ λ_{q} in χ_{d}^{eff} can be estimated using
 - \checkmark HD λ_{α}
 - \checkmark conduction limited λ_T , $\lambda_q = 2\lambda_T/7$
 - \checkmark sheath limited λ_T :

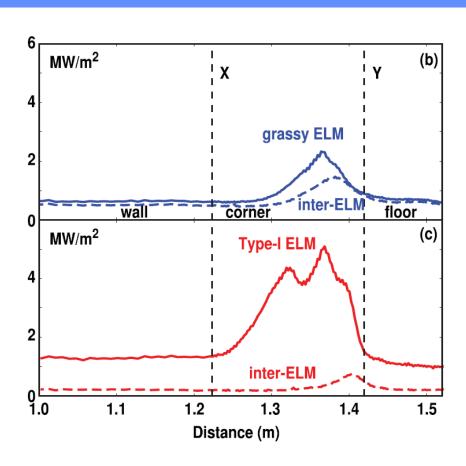
$$\square$$
 $\lambda_n \to \infty$, $\lambda_q = (1/\lambda_n + 3/2\lambda_T)^{-1} = 2\lambda_T/3$

$$\square$$
 $\lambda_n = \frac{1}{5}\lambda_T, \lambda_q = (1/\lambda_n + 3/2\lambda_T)^{-1} = 2\lambda_T/13$


- χ_d^{eff} decreases for strong magnetic field B, high current I_p (or B_{pol}), large machine size R, low T_{sep}.
- $\chi_{\perp}^{c,SPARC} \sim 0.13 \ m^2/s, \ \chi_{\perp}^{c,ITER} \sim 0.05 \ m^2/s$

SPARC will possibly be in fluctuation dominant regime, because of strong magnetic field and relative low χ^c_{\perp}

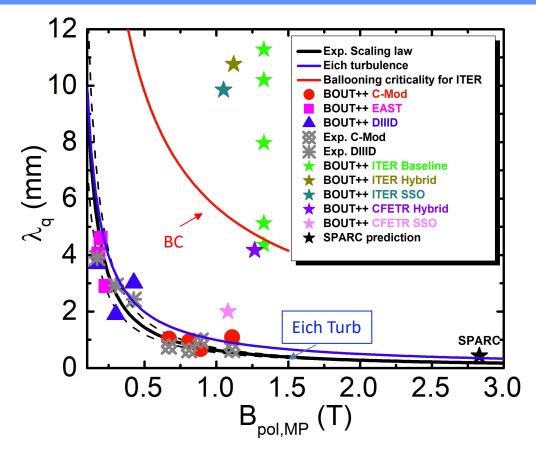

Fluctuation thermal diffusivity can be increased from Inter-ELMs to small/grassy ELM regime


- Broadening from micro-turbulence may not be effective
 ✓ as Eich turbulence scaling indicates
- Ballooning criticality sets a threshold for ELMs with larger $\chi^{c,ELMs}_{\perp}$

Recent DIII-D grassy ELM experiments show a consistent divertor heat flux width broadening and amplitude reduction, just as BOUT++ simulations demonstrated in the grassy ELM regime

Nazikian, et al. Nucl. Fusion **58** (2018) 106010

X.Q. Xu H Q Wang, et al, IAEA FEC 2020



- The D_{α} signal (RED) and inner divertor heat flux width (BLACK) from IR camera measurement, which shows mixed ELM activities.
- · From inter-ELM phase to the grassy ELM phase,
 - √ The width increases about 2-3 times w/o RMP
 - √ The divertor heat flux width increases about 6 times w/ RMP
- The grassy-ELMs exhibit a reduced peak heat flux to the divertor similar to the inter-ELM heat flux with good confinement

Summary

- BOUT++ turbulence simulation shows that peelingballooning modes dominate in the linear stage for CFETR & ITER scenarios and eventually evolve into various type ELMs.
- The divertor heat flux width broadens with fluctuations
 - Small/grassy ELM broadening is much effective
 - ✓ Ballooning critical gradient scale length near separatrix is a good proxy for heat flux width in small ELMs
 - Micro-turbulence broadening is very little for ITER & CFETR

- Divertor heat flux will pose a significant challenge for compact pilot plant
 - \circ SPARC is possibly in fluctuation dominant regime, due to strong magnetic field and lower χ^c_{\perp}
 - O A proper design for combination of B, Bp, R, T_{sep} could significantly alleviate the challenge