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Machine learning accelerated models for scenario
optimization on NSTX-U
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Model-based between-shots and real-time actuator trajectory planning will be critical to achieving high per-
formance scenarios and reliable, disruption-free operation in present-day tokamaks, ITER, and future fusion
reactors. Key to the success of such tools is the availability of models that are both accurate enough to fa-
cilitate useful decision making and fast enough to enable optimization algorithms to meet between-shots
and real-time deadlines. While state-of-the-art integrated modeling codes come close to the accuracy and
completeness needed for these applications, they are too computationally intensive. To address this prob-
lem, a novel accelerated simulation capability has been developed for NSTX-U by applying machine learning
techniques to both empirical data and TRANSP simulations, enabling profile and equilibrium predictions at
real-time relevant time scales. The approach includes machine learning surrogates for high-fidelity TRANSP
modules that accelerate calculations by orders of magnitude while maintaining high-fidelity. For quantities
that are not accurately modeled by TRANSPmodules, machine learning is applied to an experimental database
to create empirical models. By incorporating accelerated physics models, rather than training models entirely
based on data, the combined models are expected to perform better when projecting beyond operating points
that have already been realized. By incorporating empirical data based models, the combined models can
achieve high accuracy and continue to learn as new experimental data is obtained. Presented results provide
a glimpse of the potential impact of accelerated modeling on scenario optimization and control, motivating
further development of models and applications.

Surrogate models for TRANSP calculations: One of the most accurate, but also time-consuming, calcula-
tions in TRANSP is NUBEAM, a Monte Carlo code that calculates the influence of neutral beam injection on
plasma heating, current drive, and torque. In (1) an accelerated surrogate model for NUBEAM was developed
by generating a large database of NUBEAM results for plasma conditions relevant to the NSTX-U operating
space. An ensemble approach is used, in which multiple neural networks are trained on different subsets of
the training data, and the output of the model uses the average of the neural network predictions. A compari-
son of NUBEAM predicted heating and current profiles with those predicted by the neural network is shown
in Figure 1, showing good agreement at different times during a TRANSP run that was not in training. Impor-
tantly, the neural network only takes ~100 microseconds to evaluate compared to seconds or minutes for the
original code. Surrogate models have also been developed for parameters used to evaluate the magnetic and
momentum diffusion equations. A fast neural network has also been developed to generate plasma equilibria
from coil currents and pressure and current profiles.

Figure 1: TRANSP calculated profiles of beam heating to electrons compared with the results of the
NubeamNet neural network model.

Empirically identified models: While a great deal of progress has been made in theoretical understand-
ing and computational modeling of the turbulence that dominates transport in tokamak plasmas, there is
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much work to be done to enable consistent, accurate predictions of the evolution of these profiles from first-
principles. Accuracy aside, these models are far too computationally intensive for use in optimization and
real-time applications. While recent work has shown that models for transport coefficients can be acceler-
ated through the use of neural networks (2,3), we take an alternative data-driven approach that is fast and
can reproduce experimental profile evolution well enough shot planning and control applications. Since the
shape of the temperature and density profiles are typically observed to be ‘stif’, i.e., insensitive to the detailed
distribution of sources, the electron temperature and pressure profile shapes are modeled as the output of a
neural network trained on the shape of the electron density and temperature profiles measured during the
2016 NSTX-U experimental campaign. The model uses plasma current, plasma boundary shaping parameters,
volume-averaged electron density and pressure as input and is developed using the same techniques described
in (1). As demonstrated in the example results shown in Figure 2, the model is able to accurately reproduce the
shape of electron density profiles on NSTX-U. Volume averaged stored energy and density are then predicted
from energy and particle balance using empirical confinement scaling expressions.

Figure 2: Comparison of experimental electron density profile shape to neural network prediction.

Actuator trajectory optimization: The fast execution time of the machine learning accelerated scenario
evolution model is exploited to enable rapid optimization of actuator trajectories to track a target evolution
of fast ion and thermal pressure. To handle the nonlinearity of the problem, genetic optimization is used to
find to find a good candidate solution, followed by sequential quadratic programming to refine the solution.
Example results of applying the optimization approach are shown in Figure 3. The plasma current and total
beam power requests are ramped up to around 1MA and 3.6MW, respectively, and result in good tracking
of the target trajectories for both fast ion pressure and electron pressure. Constraints on individual and
total beam powers were considered, along with constraints on the plasma current magnitude and ramp rate.
Importantly, the optimization penalizes largemodel ensemble standard deviations (depicted as shaded regions)
to help ensure the obtained results are from the reliably modeled operating space. Future work will include
further development of optimization techniques, and real-time applications.

Figure 3: Optimized injected beam power and plasma current (left) for achieving tracking of target fast
ion (center) and electron pressure (right) profile evolution.

Work supported by US Department of Energy Contract No. DE-AC02-09CH11466.
(1) M. D. Boyer, et al., Nuclear Fusion 2019 59 056008.
(2) O. Meneghini, et al., Nuclear Fusion 2017 57 086034.
(3) J. Citrin, et al., Nuclear Fusion 2015 55 092001.

https://nstx.pppl.gov/DragNDrop/Scientific_Conferences/IAEA/IAEA_2020/Synopses/Figures/Boyer_IAEA2020_img2.png
https://nstx.pppl.gov/DragNDrop/Scientific_Conferences/IAEA/IAEA_2020/Synopses/Figures/Boyer_IAEA2020_img3.png


Affiliation
Princeton Plasma Physics Laboratory

Country or International Organization
United States

Authors: BOYER, Mark (Princeton Plasma Physics Laboratory); KAYE, Stanley (Princeton Plasma Physics
Laboratory, Princeton University, Princeton NJ, 08543 USA)

Presenter: BOYER, Mark (Princeton Plasma Physics Laboratory)

Session Classification: P7 Posters 7

Track Classification: Magnetic Fusion Experiments


