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Understanding plasma at reactor relevant conditions requires
multi-billion dollar devices - how do we make the most of this investment?

« Experimental time is limited and operators must
ensure machine and personnel safety
« Shot development, control commissioning, parameter

scans, between
limited

» Predict first: use integrated models (e.g., TRANSP)
to develop experiments.
» Predictive models are steadily improving but not complete
« Can take hours/days to run predictive models for whole

discharges

Need to have racf
occur between/

1.  Accelerate w
2. ML empirical
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trajectories

uring shots

 Proposed solution: Scenario optimization using
machine learning models

Genetic algorithms for optimization of actuator
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PPPL's TRANSP code integrates numerous physics
modules to enable scenario prediction

« Used for both analysis of

experiments and prediction INPUT. Experimental dota and
p p ;. model/calculation assumptions I; \
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up trajectories for NSTX-U
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Numerical optimization algorithms have been used to
automate trajectory design with TRANSP

* Reduces manual time I}rlnp:iovert{ler}ts?ver]
1 11 and optimization
required by physicists et e | @@ ——

« Enables improved trajectory ¢ —poosta
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(1) Machine learning enables faster versions of
physics models for optimization and control

* Predictive TRANSP simulations can take hours per simulation second
- NUBEAM is a Monte Carlo code that calculates the effect of neutral beams on
the plasma (heating, current drive, torque)

. Often takes >30% of calculation time Boyer et al., Nuclear Fusion 2019

- Basic machine learning approaches enable the development of NubeamNet
led NSTX-U TRANSP run 204682513, x=0.053 led NSTX-U TRANSP run 204682513
Calculation of | L N i
beam effects (at T 150 T " bearet: 1 136
5ms intervals) took &1 e oo
less than 50ms § 1001 £
for the entire gos §]
shot, compared to ha g
minutes to hours "
for NUBEAM i S S e
02 04 19ilr6ne [s] 08 10 12 Normalized toroidal flux
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Orders of magnitude speed increase enabled by neural
networks trained on database of NUBEAM results

Neural network - a universal approximator

Hidden RPN
layer

Input
layer

Connection

weights

(tuned based on
training data)

Output
layer

Neuron
(w/ nonlinear
activation
function)

Neural network model development
1. Database generation: NSTX-U

TRANSP runs (~2000, ~100
samples per run), including scans of
important parameters

2. Data reduction: Make the data
manageable. e.g., reduce profile
data, time history

Dataset

3. Training 4. Validation 5. Testing

Tune Does the
: Select model
connection to00lo model
weights POIogy generalize?
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Two of the challenges to machine learning for NUBEAM:
spatially distributed data and time history dependence

. . « Blackbox machine learning would address

Profiles projected onto only the . -

most significant modes! reduced with convolutional and/or recurrent

number of coefficients used for neural networks

neural network training. e Much simpler approach used here:

Coef. = Modes - profile Principal component analysis

Recon. profile = ModesT - Coef compresses spatial data and

0 encodes time-history
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Overview of NUBEAM Neural Network

Filtered
powers

Injected powers
| powers Low-pass
filters

Inputs Input scalars

Mode > Standardization

Input profiles> PCA coefficients
projection

Neural network inputs

Scalar outputs

Ensemble Inverse Mod Outputs
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>

ensemble projection
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Validation: The topology of the model must be selected
to optimize quality of fit and evaluation time

0.96 - .« o 0 ° o 8 o * Neural net code implemented on NSTX-U
o .
o o ° real-time computer
%] .+ e © |+ Calculation times well within the 200
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Trained neural network is able to accurately reproduce
time history and profiles in testlng dataset

NSTX-U TRANSP run 204682513
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(2) For phenomena not well described by physics
‘models: machine learning models from empirical data

* While ions were found to behave neoclassically on NSTX high
collisionality H-modes, electron transport was found to be
anomalous and dominant

« Multi-point Thomson scattering data is available for thousands
of discharges from NSTX and NSTX-U

» Goal: Develop prediction of electron density and pressure
profiles suitable for accelerated optimization and real-time
control applications

» Considerations:
— Inputs readily available in real-time and predictable by models

— Decouple from details of sources, profiles, and time history as much as
possible (simplifies training and integration with other models)
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Electron density and pressure profile shape can be well
predicted from a small number of scalar parameters

puts * Prediction of profiles NSTXU shot 204105
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Test results show time history and profiles are accurately
modeled
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« Time history of changes in profile peaking are
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captured by model, as well as changes in edge
density.
« The model generally averages over noise and fast |
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Uncertainty estimated from standard deviation of ensemble of
models. Ensemble created from Monte Carlo dropout works well.

Validation Testing

Ne Shape, 0= O ne shape, 0= 0me

« Generating an ensemble of
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(1+2) Initial combination of machine learning & reduced
physics models for faster prediction

* NubeamNet prediction of heating,

( N\
Neutral beams - t d " t t
L ) current arive, torque, neutron
f ‘ rate, etc
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(1+2) Initial combination of machine learning & reduced
physics models for faster prediction

Neutral beams

Density

Temperature

-
-

0D particle and energy balance, ITER confinement scaling

— Free parameters: Greenwald fraction, H98y2

Electron temperature and density profile shapes from neural

network

— Trained on empirical data (electron transport anomalous on NSTX)

lon density from quasi-neutrality, assumed Zeff

— Free parameters: Impurity species, Zeff

lon temperature assumed to be multiple of electron temperature

— Free parameter: scale factor
Electron pressure (shape)
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(1+2) Initial combination of machine learning & reduced
physics models for faster prediction

« Magnetic/momentum diffusion equation, semi-implicit solver
— Extends simplified version used in previous control modeling efforts

» Neural networks trained on TRANSP runs provide PDE
parameters

Neutral beams

r
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(1+2) Initial combination of machine learning & reduced
physics models for faster prediction

Electron density
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(3) Rapid calculation time facilitates scenario/trajectory
optimization for experiment planning and control

Previous Previous
actuator measurements
trajectories
Simulat Parameter
Imulation Empirical . .
database database estimation
Best fit Zog, fow, Hogy o, €tC. fOr
scenario of interest

]

Trajectory

Machine learning L optimizer J‘
accelerated models

Constraints

Cost function
Model training )

Feedforward
trajectories for
next shot
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Genetic algorithm enables global optimization of actuator
trajectories, gradient-based methods enable refinement

Initial population New population

Genetic algorithm finds approximate global optimum

o0
: Note:
®e Individuals
® j‘> in this case
o » are arrays
o of actuator
? magnitudes
o and
associated
Tournament @ @ Selection 0} y Cross-over.)_. Mutation @ times
= 3 v ’ = e, = o’ —>
o o
'l /" - :> = / » ‘\“ »
o [ [ é
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Different tasks can be optimized with the same model

‘and codebase with change in cost function and actuators

Jo = / " [(9e(0) = Pes(0)? + (pe(0.5) — pes(0.5))?

i
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Machine learning enables accelerated integrated
modeling for scenario optimization and control

Accelerate well-validated physics models

— Example: NubeamNet Boyer et al., Nuclear Fusion 59, 5, 2019

Generate empirical models for phenomena not well described by
physics models

— Example: Electron transport on NSTX Boyer et al., Nuclear Fusion 61, 4, 2021
Combined models for accelerated discharge prediction

— Initial version developed, on-going work to include more models

Genetic algorithms show promise for global optimization of actuator

trajectorles Boyer, Proceedings of the 2nd Conference on Learning for
Futu re/ongoing work Dynamics and Control, PMLR 120:698-707, 2020.

— Experimentally validate trajectory design approach
— Integrate accelerated models into feedback control algorithms

— Extend approach to more tokamaks pjji.o NubeamNet: Morosohk, et al., FED, 163, 112125, 2021.
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