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• Experimental time is limited and operators must 
ensure machine and personnel safety
• Shot development, control commissioning, parameter 

scans, between shot decisions by operators: expensive and 
limited

• Predict first: use integrated models (e.g., TRANSP) 
to develop experiments.
• Predictive models are steadily improving but not complete
• Can take hours/days to run predictive models for whole 

discharges
• Need to have rapid optimization capabilities to respond to situations as they 

occur between/during shots

• Proposed solution: Scenario optimization using 
machine learning models
1. Accelerate well-validated models with ML
2. ML empirical models where physics models are lacking
3. Genetic algorithms for optimization of actuator 

trajectories

Understanding plasma at reactor relevant conditions requires 
multi-billion dollar devices - how do we make the most of this investment?
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PPPL’s TRANSP code integrates numerous physics 
modules to enable scenario prediction

• Used for both analysis of 
experiments and prediction

• Ongoing development to 
improve physics fidelity 
and validate modules

• NSTX-U predictions have 
been used to propose 
flattop scenarios and ramp-
up trajectories for NSTX-U
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Numerical optimization algorithms have been used to 
automate trajectory design with TRANSP

Wehner, et al., Fusion 
Eng. Des. 146, 2019

• Reduces manual time
required by physicists

• Enables improved trajectory
design

• Still, expensive in terms of 
computation time: ~1 week to 
converged optimal trajectory
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(1) Machine learning enables faster versions of 
physics models for optimization and control

• Predictive TRANSP simulations can take hours per simulation second
• NUBEAM is a Monte Carlo code that calculates the effect of neutral beams on 

the plasma (heating, current drive, torque)
• Often takes >30% of calculation time

• Basic machine learning approaches enable the development of NubeamNet

Calculation of 
beam effects (at 
5ms intervals) took 
less than 50ms 
for the entire 
shot, compared to 
minutes to hours 
for NUBEAM

Boyer et al., Nuclear Fusion 2019
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Orders of magnitude speed increase enabled by neural 
networks trained on database of NUBEAM results

Input 
layer

Hidden 
layer

Neuron
(w/ nonlinear 
activation 
function)

Output 
layer

Connection 
weights
(tuned based on 
training data)

Neural network - a universal approximator

3. Training 4. Validation 5. Testing

1. Database generation: NSTX-U 
TRANSP runs (~2000, ~100 
samples per run), including scans of 
important parameters

2. Data reduction: Make the data 
manageable. e.g., reduce profile 
data, time history

Dataset

Tune 
connection 

weights

Select model 
topology

Neural network model development

Does the 
model 
generalize?
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Two of the challenges to machine learning for NUBEAM: 
spatially distributed data and time history dependence

• Blackbox machine learning would address 
with convolutional and/or recurrent 
neural networks

• Much simpler approach used here:
• Principal component analysis

compresses spatial data and low-pass 
filtering encodes time-history

Most significant q 
profile modes

Profiles projected onto only the 
most significant modesl reduced 
number of coefficients used for 
neural network training.

Coef. = Modes · profile
Recon. profile = ModesT · Coef.

Beam power 
augmented with 
low pass filtered 
versions 
representing 
slowing down
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Overview of NUBEAM Neural Network
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Validation: The topology of the model must be selected 
to optimize quality of fit and evaluation time

• Significant improvement with more than one layer, 
but not much benefit in going deeper

• Adding nodes improves fit, but improvement slows 
or rolls over around 100-125 nodes per layer

• Neural net code implemented on NSTX-U 
real-time computer

• Calculation times well within the 200 
microsecond control system cycle time, 
much faster than time scales of interest
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Trained neural network is able to accurately reproduce 
time history and profiles in testing dataset

• Successfully accelerated 
a computationally 
intensive code

• Accuracy and timing 
indicate the model is 
well-suited for real-time 
applications

• Promising approach that 
could be applied to 
accelerate other physics 
modules
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(2) For phenomena not well described by physics 
models: machine learning models from empirical data
• While ions were found to behave neoclassically on NSTX high 

collisionality H-modes, electron transport was found to be 
anomalous and dominant

• Multi-point Thomson scattering data is available for thousands 
of discharges from NSTX and NSTX-U

• Goal: Develop prediction of electron density and pressure 
profiles suitable for accelerated optimization and real-time 
control applications

• Considerations:
– Inputs readily available in real-time and predictable by models
– Decouple from details of sources, profiles, and time history as much as 

possible (simplifies training and integration with other models) 
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Electron density and pressure profile shape can be well 
predicted from a small number of scalar parameters

• Prediction of profiles
shapes (profiles normalized 
by volume avg.)
– Volume averages considered 

measured or predicted by 
particle balance models

– No information on sources 
included

– Prediction still quite 
successful: indicates stiff, 
self-organized profiles

• Thomson scattering profile 
data reduced through 
principal component 
analysis 

Boyer et al., Nuclear Fusion 2021
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Test results show time history and profiles are accurately 
modeled

• Time history of changes in profile peaking are 
captured by model, as well as changes in edge 
density.

• The model generally averages over noise and fast 
transients in the core
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Uncertainty estimated from standard deviation of ensemble of 
models. Ensemble created from Monte Carlo dropout works well.

Input layer Output 
layer

Drop out

• Generating an ensemble of 
perturbed models through 
Monte Carlo dropout provides 
a useful estimate of uncertainty 
that generalizes well

Validation Testing



1528th IAEA Fusion Energy Conference, Machine Learning Models for Scenario Optimization on NSTX-U, Mark D. Boyer, May, 2021

(1+2) Initial combination of machine learning & reduced 
physics models for faster prediction

• NubeamNet prediction of heating, 
current drive, torque, neutron 
rate, etc.

Neutral beams

Density

Temperature

Current profile

Rotation

Beam current drive Beam heating, ions
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(1+2) Initial combination of machine learning & reduced 
physics models for faster prediction

Neutral beams

Density

Temperature

Current profile

Rotation

• 0D particle and energy balance, ITER confinement scaling
– Free parameters: Greenwald fraction, H98y2

• Electron temperature and density profile shapes from neural 
network
– Trained on empirical data (electron transport anomalous on NSTX)

• Ion density from quasi-neutrality, assumed Zeff
– Free parameters: Impurity species, Zeff

• Ion temperature assumed to be multiple of electron temperature
– Free parameter: scale factor

Electron pressure (shape) Electron density (shape)
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(1+2) Initial combination of machine learning & reduced 
physics models for faster prediction

Neutral beams

Density

Temperature

Current profile

Rotation

• Magnetic/momentum diffusion equation, semi-implicit solver
– Extends simplified version used in previous control modeling efforts

• Neural networks trained on TRANSP runs provide PDE 
parameters
– Equilibrium dependent geometric parameters
– Bootstrap current and resistivity profiles

Bootstrap current Para/diamagnetism
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(1+2) Initial combination of machine learning & reduced 
physics models for faster prediction
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(3) Rapid calculation time facilitates scenario/trajectory 
optimization for experiment planning and control 

Parameter 
estimation

Trajectory 
optimizer

Previous 
measurements

Best fit Zeff, fGW, H98y2, etc. for 
scenario of interest

Cost function
Constraints

Feedforward 
trajectories for 
next shot

Previous 
actuator 
trajectories

Machine learning 
accelerated models

Model training

Simulation 
database

Empirical 
database
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Genetic algorithm enables global optimization of actuator 
trajectories, gradient-based methods enable refinement

Tournament Selection Cross-over Mutation

Initial population New population Genetic algorithm finds approximate global optimum

Note:
Individuals 
in this case 
are arrays 
of actuator 
magnitudes 

and 
associated 

times
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Different tasks can be optimized with the same model 
and codebase with change in cost function and actuators
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• Accelerate well-validated physics models
– Example: NubeamNet

• Generate empirical models for phenomena not well described by 
physics models
– Example: Electron transport on NSTX

• Combined models for accelerated discharge prediction 
– Initial version developed, on-going work to include more models

• Genetic algorithms show promise for global optimization of actuator 
trajectories

• Future/ongoing work
– Experimentally validate trajectory design approach
– Integrate accelerated models into feedback control algorithms
– Extend approach to more tokamaks 

Machine learning enables accelerated integrated 
modeling for scenario optimization and control

Boyer et al., Nuclear Fusion 59, 5, 2019

Boyer et al., Nuclear Fusion 61, 4, 2021

Boyer, Proceedings of the 2nd Conference on Learning for 
Dynamics and Control, PMLR 120:698-707, 2020.

DIII-D NubeamNet: Morosohk, et al., FED, 163, 112125, 2021.


