

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Machine learning accelerated models for scenario optimization on NSTX-U

Dan Boyer¹, Stan Kaye¹, Jason Chadwick²

28th IAEA Fusion Energy Conference Remote e-conference 10-15 May, 2021

Understanding plasma at reactor relevant conditions requires multi-billion dollar devices - *how do we make the most of this investment?*

- Experimental time is limited and operators must ensure machine and personnel safety
 - Shot development, control commissioning, parameter scans, between shot decisions by operators: expensive and limited
- Predict first: use integrated models (e.g., TRANSP) to develop experiments.
 - Predictive models are steadily improving but not complete
 - Can take hours/days to run predictive models for whole discharges
 - Need to have rapid optimization capabilities to respond to situations as they
 occur between/during shots
- Proposed solution: Scenario optimization using machine learning models
 - 1. Accelerate well-validated models with ML
 - 2. ML empirical models where physics models are lacking
 - 3. Genetic algorithms for optimization of actuator trajectories

PPPL's TRANSP code integrates numerous physics modules to enable scenario prediction

- Used for both analysis of experiments and prediction
- Ongoing development to improve physics fidelity and validate modules
- NSTX-U predictions have been used to propose flattop scenarios and rampup trajectories for NSTX-U

Numerical optimization algorithms have been used to automate trajectory design with TRANSP

- Reduces manual time required by physicists
- Enables improved trajectory design
- Still, expensive in terms of computation time: ~1 week to converged optimal trajectory

(1) Machine learning enables faster versions of physics models for optimization and control

- Predictive TRANSP simulations can take hours per simulation second
- NUBEAM is a Monte Carlo code that calculates the effect of neutral beams on the plasma (heating, current drive, torque) Boyer et al., Nuclear Fusion 2019
 - Often takes >30% of calculation time
- Basic machine learning approaches enable the development of NubeamNet

NSTX-U

Orders of magnitude speed increase enabled by neural networks trained on database of NUBEAM results

Neural network - a universal approximator

Neural network model development

- Database generation: NSTX-U TRANSP runs (~2000, ~100 samples per run), including scans of important parameters
- 2. Data reduction: Make the data manageable. e.g., reduce profile data, time history

Dataset

Two of the challenges to machine learning for NUBEAM: spatially distributed data and time history dependence

Profiles projected onto only the most significant modesl reduced number of coefficients used for neural network training.

Coef. = Modes \cdot profile Recon. profile = Modes^T \cdot Coef.

Blackbox machine learning would address with convolutional and/or recurrent neural networks

- Much simpler approach used here:
 - Principal component analysis compresses spatial data and low-pass filtering encodes time-history

NSTX-U

Overview of NUBEAM Neural Network

Validation: The topology of the model must be selected to optimize quality of fit and evaluation time

- Significant improvement with more than one layer, but not much benefit in going deeper
- Adding nodes improves fit, but improvement slows or rolls over around 100-125 nodes per layer

- Neural net code implemented on NSTX-U real-time computer
- Calculation times well within the 200 microsecond control system cycle time, much faster than time scales of interest

Trained neural network is able to accurately reproduce time history and profiles in testing dataset

- Successfully accelerated a computationally intensive code
- Accuracy and timing indicate the model is well-suited for real-time applications
- Promising approach that could be applied to accelerate other physics modules

NSTX-U

(2) For phenomena not well described by physics models: machine learning models from empirical data

- While ions were found to behave neoclassically on NSTX high collisionality H-modes, electron transport was found to be anomalous and dominant
- Multi-point Thomson scattering data is available for thousands of discharges from NSTX and NSTX-U
- **Goal:** Develop prediction of electron density and pressure profiles suitable for accelerated optimization and real-time control applications
- Considerations:
 - Inputs readily available in real-time and predictable by models
 - Decouple from details of sources, profiles, and time history as much as possible (simplifies training and integration with other models)

Electron density and pressure profile shape can be well predicted from a small number of scalar parameters

Inputs		 Prediction of profiles 	NSTX-U shot 204105
Symbol	Name	shapes (profiles normalized by volume avg.)	5.0 Pred.: t=0.097s Exp.: t=0.249s 4.0 Pred.: t=0.249s
R_0	Major radius	 Volume averages considered 	
κ	Elongation	measured or predicted by	$n_e T_e / \langle n_e T_e \rangle$
I_p	Plasma current	particle balance models	1.0
a	Minor radius	 No information on sources 	0.0
$B_{\phi,v}R$	Vacuum toroidal field	included	0.0 0.2 0.4 0.6 0.8 1.0 Normalized toroidal flux
δ_u	Upper triangularity	 Prediction still quite successful: indicates stiff, 	NSTX-U shot 204105
δ_l	Lower triangularity	self-organized profiles	2.5 $n_e/\langle n_e \rangle$
$\langle n_e \rangle$	Volume-averaged electron density	Thomson scattering profile	2.0
$\langle n_e T_e \rangle$	Volume-averaged electron pressure	data reduced through	1.5 value
	Outputs	principal component	1.0
$n_e/\langle n_e angle$	Electron density profile shape	analysis	0.5
$\frac{n_e T_e}{\langle n_e T_e \rangle}$	Electron pressure profile shape	Boyer et al., Nuclear Fusion 2021	0.0 0.2 0.4 0.6 0.8 1.0 Normalized toroidal flux
12 28th IAEA Fusion Energy Conference, Machine Learning Models for Scenario Optimization on NSTX-U, Mark D. Boyer, May, 2021			

Test results show time history and profiles are accurately modeled

- Time history of changes in profile peaking are captured by model, as well as changes in edge density.
- The model generally averages over noise and fast transients in the core

Uncertainty estimated from standard deviation of ensemble of models. Ensemble created from Monte Carlo dropout works well.

 Generating an ensemble of perturbed models through
 Monte Carlo dropout provides a useful estimate of uncertainty that generalizes well

Input layer

Drop out

(1+2) Initial combination of machine learning & reduced physics models for faster prediction

(1+2) Initial combination of machine learning & reduced physics models for faster prediction

(1+2) Initial combination of machine learning & reduced physics models for faster prediction

(1+2) Initial combination of machine learning & reduced physics models for faster prediction

(3) Rapid calculation time facilitates scenario/trajectory optimization for experiment planning and control

Genetic algorithm enables global optimization of actuator trajectories, gradient-based methods enable refinement

Different tasks can be optimized with the same model and codebase with change in cost function and actuators

$$J_0 = \int_{t_i}^{t_f} \left[(p_e(0) - p_{e,t}(0))^2 + (p_e(0.5) - p_{e,t}(0.5))^2 + (P_{fi}(0) - P_{fi,t}(0))^2 + (P_{fi}(0.5) - P_{fi,t}(0.5))^2 \right] dt,$$

NSTX-U

 $J_1 = J_0 + \int_{t_e}^{t_f} [\lambda_{p_e}(\sigma_{p_e}^2(0) + \sigma_{p_e}^2(0.5) + \lambda_{P_{fi}}(\sigma_{P_{fi}}^2(0) + \sigma_{P_{fi}}^2(0.5)]dt$

Weights fast ion and electron pressure profile tracking at two points

Penalty on model uncertainty keeps solution in confidence region

Result ($\rho = 0$)

arget $(\rho = 0)$

arget (a = 0)

0.6

0.5

semble std. dev. $(\rho = 0)$

insemble std. dev. ($\rho = 0.5$

0.7

0.8

Machine learning enables accelerated integrated modeling for scenario optimization and control

- Accelerate well-validated physics models
 - Example: NubeamNet Boyer et al., *Nuclear Fusion 59, 5,* 2019
- Generate empirical models for phenomena not well described by physics models
 - Example: Electron transport on NSTX Boyer et al., *Nuclear Fusion 61, 4,* 2021
- Combined models for accelerated discharge prediction

 Initial version developed, on-going work to include more models
- Genetic algorithms show promise for global optimization of actuator trajectories
 Boyer, Proceedings of the 2nd Conference on Learning for
- Future/ongoing work Dynamics and Control, PMLR 120:698-707, 2020.
 - Experimentally validate trajectory design approach
 - Integrate accelerated models into feedback control algorithms
 - Extend approach to more tokamaks DIII-D NubeamNet: Morosohk, et al., FED, 163, 112125, 2021.