

ENERGY CONFINEMENT IN THE SPHERICAL TOKAMAK GLOBUS-M2 WITH A TOROIDAL MAGNETIC FIELD APPROACHING 0.8 T

<u>G.S. Kurskiev</u>, N.N. Bakharev, F.V. Chernyshev, V.K. Gusev, N.A. Khromov, E.O. Kiselev, S.V. Krikunov, V.B. Minaev, I.V. Miroshnikov, A.N. Novokhatskii, N.S. Zhiltsov, E.E. Mukhin, M.I. Patrov, Yu.V. Petrov, N.V. Sakharov, K.D. Shulyatiev, P.B. Shchegolev, O.M. Skrekel, A.Yu. Telnova, E.E. Tkachenko, E.A. Tukhmeneva, V.A. Tokarev, S.Yu. Tolstyakov, V.I. Varfolomeev, A.V. Voronin, V.V. Bulanin*, A.V. Petrov*, A.Yu. Yashin*, A.A. Kavin**, E.G. Zhilin***.

Ioffe Institute, St. Petersburg, Russia

*Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

**JSC «NIIEFA», St. Petersburg, Russia

***IFT Ltd, St. Petersburg, Russia

Spherical tokamak Globus-M2

- R [cm]/a [cm]= 36/24 = 1.5
- $B_T = 1T, I_p = 500 \text{ kA}$
- Diverse diagnostics, heating and CD systems, including 2xNBI, ICRH, LHCD, plasma gun
- Extreme $P_{heat}/V = 6 MW/m^3$

Parameter	Globus-M	Globus-M2
Btor/Ip, T/kA	0.4 / 250	1 / 500
NBI	1 MW 30 keV	1 MW -40 keV + 1 MW -50 keV
ICRH, kW	120	500
LHCD, kW	100	500

First plasma: April 23rd 2018

L-H transition at the Globus-M2

 $P_{thr} = 0.072 \cdot n_{20}^{0.7} \cdot B_T^{0.7} \cdot S^{0.9} \cdot (Z_{eff}/2)^{0.7} \cdot F(A)^{0.5}$ [ITPA 2004]

 $P_{thr}^{Globus-M2} = 0.08-0.1$ MW, that is 4-8 times lower than the value of the loss power before transition

- A transition to the H-mode usually occurs a few milliseconds after injection of NB ($E_b = 28$ keV, $P_{NBI} = 0.8$ MW)
- The increase of the poloidal rotation velocity and the appearance of the *ExB* drift velocity shear near the LCFS was registered by DBS
- A sharp drop of the scattering density fluctuations amplitude is clearly observed during the transition
- The scaling for the ion heat flux is better suited for LH transition prediction for Globus-M2 plasma than the scaling for the total loss power

$$Q_{i,L-H} = 0.0029 \cdot n_{19}^{1.05} \cdot B_T^{0.68} \cdot S^{0.93}$$
[Schmidtmayr 2018]
[Ryter 2014]

$$Q_{i,L-H}^{\text{scaling}} = 10 - 15 \text{ kW}$$

$$Q_{i,L-H}^{\text{ASTRA}} = 15 - 30 \text{ kW}$$

B_T impact on plasma performance in Globus-M2

- High plasma current results in an easy access of regimes with high average density $n_e = (8-10) \ 10^{19} \ \mathrm{m}^{-3}$ and longer pulse duration
- Double increase of the plasma current and toroidal magnetic field results in 4-fold T_e increase in the plasma core
- The observed strong growth of the plasma total stored energy is related to the increase in of the plasma energy confinement time
- The energy confinement time values obtained for $B_T=0.8 T$ fits well the predictions made using ST-like scaling developed at the Globus-M tokamak for $B_T<0.5$ T: $\tau_E \propto I_p^{0.48} B_T^{1.28}$ [Kurskiev NF 2019]

Electron and ion heat transport analysis

- Power balance analysis was carried out for plasma with similar $n_e = 6.5 \cdot 7 \cdot 10^{19} \text{m}^{-3}$ and different B_T and I_p (0.4 T/0.2 MA, 0.7 T/0.3 MA and 0.8 T/0.4 MA) using ASTRA code
- The beam heating power deposition and W_{\perp}^{fast} were estimated by NUBEAM and full orbit modelling with 3D-fast ion tracking algorithm.
- $W_i + W_e + W_{\perp}^{fast}$ corresponds well to the values measured by the diamagnetic loop W^{DIA}
- $W_{\perp}^{fast}/W^{DIA} \approx 0.1$
- Both $\chi_e \approx \chi_i$ decrease in the plasma core by 2-2,5 times
- Anomalous ion heat transport contribution can be assumed for low collisionality plasma for $B_T=0.8$ T case.

Collisionality impact on energy confinement

- Experiments carried out on the Globus-M2 demonstrate strengthening of the confinement dependence on collisionality for lower v^* range in ST.
- This experimental result highlights the difference between the physical processes that governs thermal energy transport in high and low aspect ratio tokamaks.

Impact of the Globus-M2 data on energy confinement scaling for ST's

- Strong τ_E dependence on B_T and moderate on I_p is still valid for $B_T = 0.8$ T
- Globus-M2 data allows to estimate τ_E dependence on size for ST's

Summary slide, Globus-M2, EX-P7 659

- Strong τ_E dependence on B_T and moderate on I_p is valid for spherical tokamak with $B_T = 0.8$ T
- A twofold B_T increase in the Globus-M2 enhances the synergistic effect of improving both electron and ion heat transport with decreasing collisionality that led to 3-fold rise of τ_E
- Experiments carried out on the Globus-M2 demonstrate strengthening of the confinement dependence on collisionality for lower *v** range in STs, opposite to high aspect ratio tokamaks

