Recent progress in the assessment of irradiation effects for in-vessel fusion materials: tungsten and copper alloys

Materials for plasma-facing components

- Baseline design:
 - Tungsten block
 - Copper pipe

- Ageing under nuclear operation:
 - Embrittlement of tungsten
 - Softening of copper
 - Strength of W-Cu joint

- Materials & bonding => **Lifetime** of PFC unit

10-20 MW/m² + 14.1 MeV neutrons

1200°C on surface

-10¹⁴ n/cm²/sec
PFC materials: EU programme 2014-2020

Plasma facing materials: decrease of DBTT, recrystallization resistance, oxidation resistance

Heat sink materials: high temperature performance (≤ 500-600°C)

Interlayers & Joints: closing of operational temperature gap, stress reduction (e.g. FGMs, alternative concepts)

Improvement Strategies:
- **Plasma facing materials**
 - CuCrZr
 - Safe operation T
 - Recrystallization

- **Heat sink materials**
 - Baseline & advanced tungsten alloys
 - Safe operation T

- **Interlayers & Joints**
 - Closing of operational temperature gap
 - Stress reduction (e.g. FGMs, alternative concepts)

Irradiation dose [dpa]

- **ITER 0.1 dpa**
 - Phase I DT-operation

- **ITER 0.4 dpa**
 - PFC replacement

- **ITER 1 dpa**
 - End of life

- **DEMO 5 dpa**
 - Phase I
Strategy to test materials for nuclear fusion environment

- Neutron irradiation at BR2
 - 3-5 dpa(Fe)/year
- Testing in Hot Cells
 - Tensile, bending, fracture toughness
 - Microstructural analysis
- Development of materials & test techniques (SSTT)
 - High temperature testing
 - Small-scale test techniques to enable high flux irradiation
- Accounting for Re/Os transmutation
 - 2 at.%Re / dpa

1) Neutron Irradiation exposure

2) Post-irradiation examination

3) Design rules assessment
Advanced W alloys: additive manufacturing

- Powder Injection Molding (PIM)
 - Strengthening by ODS or TiC particles
 - Mass production of final-shaped components
 - Fully isotropic material properties
 - Recrystallization-resistant preserving fine-grain size

![Diagram of powder injection molding process](image1)

- Fabrication of green parts
- Heat-treatment at ~2000 °C
Advanced W alloys: fiber composites

- W fiber-reinforced
- Enables usage of brittle matrix

As fabricated

![Graph showing load vs. displacement](image)

Matrix failure = bulk material failure

Multi-fibre sample, 3-point bending

Reference: [Chawla 1993]
Advanced W alloys: alloyed/doped rolled plates

- Rolled K-Re doped plates
 - Reduction in DBTT / increase in strength
 - Mature fabrication technology
 - Screening irradiation is already performed
Advanced Cu alloys reinforced by W

- Option 1: Particle-reinforced W-Cu composites
- Option 2: Fiber-reinforced W-Cu composites
 - Enhanced strength and thermal conductivity
 - Cost-effective solution
 - Good potential for industrial upscaling
Advanced Cu alloys: Vanadium/ODS/W laminates

• Option 3: Strengthened by Vanadium & ODS-particles
• Option 4: W-Cu laminates: strong & ductile

Ductile W thin foil

Joining technology

Final product: pipe or tile

Tests are performed on reference samples used for neutron irradiation
Irradiation effects in W ITER spec.: 1 dpa @ 800°C

- Large shift in Ductile to Brittle Transition Temperature
- ΔDBTT = 600-625°C
- Irradiation below 800°C embrittles W

DBTT defined at the onset of non-linear load-displacement response.
Irradiation effects in W ITER spec.: 1 dpa @ 900-1200°C

- Irradiation at 900-1200°C @ 1dpa still leads to DBTT shift > 200°C
- Irradiation at 600°C @ 0.1 dpa causes ΔDBTT ~ 150°C
- Irradiation enhances transgranular cleavage
Irradiation effects in W alloys: 1 dpa @ 600-1100°C

- Severe embrittlement in PIM alloys
- Pronounced hardening even after high temperature irradiation
- Irradiation hardening alters in Re-added alloy (transmutation to Os)
Irradiation effects in W alloys: 1 dpa @ 600-1100°C

- $\Delta DBTT$ of rolled plates is lower by 50-150°C than in ITER spec. W
- $T_{irr}=1100°C$, $\Delta DBTT$ is ~250-400°C for rolled and forged W plates
- At $T_{irr}=600°C$, Re alloying increase DBTT shift

DBTT defined at the onset of flexural strain exceeding 5%

Promising results for rolled plates
Microstructural studies: single crystal vs. rolled plate

• Irradiation hardness (ΔH) is much lower in rolled plate compared to single crystal
• Transmission microscopy and positron spectroscopy proved the reduced void growth in the rolled plate
• High density of dislocations and grain boundaries operate as defect sinks

Fully consistent with theoretical expectations
Irradiation effects in Advanced Cu alloys & composites

- W-Cu Laminates: strong impact on ductility (= embrittlement)
- W-fiber composites: reduction in total elongation & hardening
- W-particle composite: reduction of elongation, minor hardening/softening
- V-alloyed CuCrZr: softening after irradiation at 450°C
- ODS-CuCrZr: reduction of uniform & total elongation
Irradiation effects in Fiber-reinforced composites

- **W-fiber composites:**
 - Some fibers fracture brittle
 - Matrix remains ductile

Promising results

Engineering stress [MPa] vs Engineering strain [-]
Irradiation effects in W-Cu laminates

- **W-Cu laminates:**
 - Fully brittle fracture
 - Cracks initiate near interfaces

![Graph showing engineering stress vs. engineering strain for CuCrZr-W laminate at different irradiation and test temperatures.]

- Unexpected results
Irradiation effects in Advanced Cu alloys & composites

- Irradiation softening is observed in: V-alloyed CuCrZr
- Complete loss of ductility is observed in: W-Cu laminates
- Reduction of elongation & hardening (= embrittlement):
 - Moderate in W-fiber and -particle reinforced composites
 - Considerable in ODS-CuCrZr
Summary & conclusions

• ITER specification W irradiated at ~1 dpa (W):
 • (1) Ductile operation is 900-1100°C range
 • DBTT (T_{irr}=800°C) = 1100°C; DBTT (T_{irr}=1100°C) = 800°C

• Advanced W-alloys irradiated at ~1 dpa (W):
 • (2) Ductile threshold can be reduced to 600°C or even lower
 • Application rolling/forging reduces DBTT and irradiation embrittlement
 • Re alloying increases DBTT shift (transmutation)

• Advanced Cu alloys irradiated at ~2.5 dpa (Cu):
 • (3) Unexpected embrittlement of W-Cu laminates
 • Strength of W-Cu interface
 • (4) Softening of V-alloyed CuCrZr above 350°C
 • Stability of V-precipitates under irradiation
 • (5) Promising results for fiber-reinforced composites
 application window might be extended above 450°C
 • W fibers preserve ductile deformation in a wide T_{irr} range
Copyright © SCK CEN

PLEASE NOTE!
This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN.
If this explicit written permission has been obtained, please reference the author, followed by ‘by courtesy of SCK CEN’.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN
Belgian Nuclear Research Centre
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS
Operational Office: Boeretang 200 – BE-2400 MOL
Summary & conclusions

- ITER specification W irradiated at ~1 dpa (W):
 - (1) Ductile operation is 900-1100°C range
 - DBTT \(T_{dbtt} = 800°C \) = 1100°C; DBTT \(T_{dbtt} = 1100°C \) = 800°C

- Advanced W-alloys irradiated at ~1 dpa (W):
 - (2) Ductile threshold can be reduced to 600°C or even lower
 - Application rolling/forging reduces DBTT and irradiation embrittlement
 - Re alloying increases DBTT shift (transmutation)

- Advanced Cu alloys irradiated at ~2.5 dpa (Cu):
 - (3) Unexpected embrittlement of W-Cu laminates
 - Strength of W-Cu interface
 - (4) Softening of V-alloyed CuCrZr above 350°C
 - Stability of V-precipitates under irradiation
 - (5) Promising results for fiber-reinforced composites
 - Application window might be extended above 450°C
 - W fibers preserve ductile deformation in a wide \(T_{irr} \) range