ID: 845 **Characteristics of the Extracted Negative-Ion Beam** in a Cesium-Free Negative-Ion Source using TPDSheet-U A.TONEGAWA, H.KAMINAGA, K.HANAIN, T.TAKIMOTO, K.N.Sato*, K. KAWAMURA Department of Physics, School of Science, Tokai University, *Tokyo University of Science atone@tsc.u-tokai.ac.jp

ABSTRACT

•This study reports a progress toward realizing a high-performance Cs-free negative ion source, that produces negative ions by volume production in a magnetized-sheet plasma device (TPDsheet-U).

• Negative hydrogen ions are successfully extracted from the sheet plasma by single/multi-aperture grids, and the ratio of the extracted electron

OUTCOME

Basic Characteristics of Sheet Plasma

A magnetized sheet plasma is suitable for generating negative hydrogen ions through dissociative attachment because the distance between the region containing high-energy electrons (10–15 eV) and low-energy electrons, which is the region just in front of the grid (y = 10 - 25 mm).

current $J_{FG}(e)$ and hydrogen negative-ion current $J_{C}(H^{-})$, J_{FG}/J_{C} decreases from 10 to 0.2 with a soft magnetic material plate (SMP), which is a physical filter that prevents electron diffusion from the extraction region. •The J_c is approximately 5-8 mA/cm2 at Vex of 10 kV, Id of 80 A, the gas pressure of 0.3 Pa, and the magnetic field strength of 40 mT.

BACKGROUND

•Most negative-ion sources use Cs to comply with the strict requirements. However, a careful control of the amount of Cs vapor is required, and regular maintenance becomes difficult for long-time operations. Thus, the Cs consumption must be reduced, or alternative method for a Cs-free ion source is highly necessary.

•The reduction of electron co-extraction is also a common and essential issue for all negative-ion sources. A co-extracted electron causes power wastage and a high heat load of the extraction grid.

•This study presents a design of Cs-free negative ion source using volume production in TPDsheet-U with a single- and multi-aperture grid and the characteristic of the developed extraction system on it. We have applied a soft magnetic material plate (SMP) in this study. to reduce the electron coextraction.

Effects of the SMP on Extracted Ion Beam of Single

The SMP is effective in reducing the electron co-extraction. The ratio of the extracted electron current $J_{FG}(e)$ and hydrogen negative-ion current $J_{C}(H^{-})$, J_{FG}/J_{c} decreases from 2 to 0.2 with SMP, which is a physical filter that prevents electron diffusion from the extraction region.

Extracted Ion Beam of Multi-aperture Grids with SMP

Negative hydrogen ions have been successfully extracted from the sheet plasma on the multi-aperture grids. The negative ion current density Jc was about 5-8 mA/cm² under the following conditions: extraction voltage V_{ex} of 10 kV, discharge current I_d of 80 A, gas pressure of 0.3 Pa, and magnetic field strength of 40 mT. The electron current JEG(e) with the SMP is reduced by about 85% compared to that without the SMP.

(a) $J_c(H^-)$ and $J_{EG}(e)$, (b) J_{EG}/J_c ratio versus I_d on the **Single-Aperture Grids**

Cs-Free Negative-Ion Source TPDsheet-U

SMP was positioned near the PG aperture on the source plasma side (thickness: 0.3 mm; width: 30 mm; and length: 10 mm)

(a) $J_{C}(H^{-})$ and $J_{EG}(e)$, (b) J_{EG}/J_{C} ratioversus I_{d} on the Multi-Aperture Grids

CONCLUSION

The electron current can be effectively reduced bending the magnetic field lines and by trapping electrons with the SMP at the extraction region.

Multi-Aperture Grid wit SMP

•In this work, the characteristics of extracted beam current by single and multi-aperture grids with SMP are investigated in a magnetized sheet plasma system without Cs seeding (TPDsheet-U). •The SMP is effective to reduce the JEG/JC as a physical filter to prevent the diffusion of electrons from the extraction region.

•The performance of the current density of the negative hydrogen ion beam Jc without Cs on TPDsheet-U is approximately half of that of the negative ion source on ITER-NBI with Cs.

ACKNOWLEDGEMENTS

•This work is performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS20KOAR025).

REFERENCES

[1] K. Hanai, et.al., Fusion Eng. and Des. **146** (2019)2721. [2] H. Kaminaga, et.al., Rev. Sci. Instrum. **91** (2020) 113302.