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The CFETR “hybrid” scenario

G.M. Wallace
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Peaked Te profile

Low density and flat profile make LFS 
LHCD a viable option

Large Shafranov shift

T e
[k

eV
]

n e
[m

-3
]

r/a

r/a

Ip⊗
BT⊗

R0 = 7.2 m, a = 2.2 m, 
B0 = 6.5 T, Ip = 13 MA, 
Q = 8.3, fBS = 0.47



Goal: determine optimal LHRF 
parameters with parametric scans
¨ Scan comprises 5 parameters:

¤ n||1, HFS antenna n||
¤ n||2, LFS antenna n||

¤ !1, HFS antenna poloidal position
¤ !2, LFS antenna poloidal position
¤ P2/P1, ratio of power between HFS and LFS antennas

¨ "Scope workflow used for parametric scans with GENRAY/CQL3D 
ray tracing/Fokker-Planck codes

¨ Takes considerable wall-clock time to run many simulations even with 
narrow range for each parameter (5 points x 5 parameters = 3125 
simulations

¨ Fully automated n-D parameter scans will also be critical for 
building lookup table of EAST discharges w/ n⊥ rotation due to 
scattering
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Poloidal launch point defined by angle with respect to 
magnetic axis; strong Shafranov shift puts 90° on LFS

G.M. Wallace

3

! = 90°! = 135° ! = 45°



LH system assumptions

¨ f0 = 4.6 GHz
¤ VKC-7849B klystrons (as used 

on EAST) at 250 kW each
¨ PLH = 20 MW not including 

reverse or side lobes
¤ ~30 MW net power 

required with MJ or PAM 
antenna

¤ ~160 klystrons needed 
with transmission losses & 
redundancy

¨ Full width of n|| spectrum
= 0.2
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Conservative SOL profiles used in this 
study

¨ e-folding width of ~2 cm for ne and ~5 mm for Te to 
increase collision frequency

¨ High collisionality in SOL results in non-resonant 
collisional damping of waves which do not absorb 
on single-pass

¨ Safeguards against multi-pass damping scenarios 
for which ray tracing is less trustworthy
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HFS scan: 1.3 MA at ! = 0.65 for 
(150°, n|| = -1.47)
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HFS launch has good accessibility and 
damps at ! ~ 0.65

¨ Higher B on HFS allows 
waves to penetrate 
directly to core plasma

¨ Little opportunity 
for losses in SOL to
impact efficiency

¨ Low n|| can be
used even with
“lossy” SOL
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HFS launch insensitive to width of n||
spectrum (!n||)
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CFETR antenna spectral width ~ 0.13
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HFS scan summary

¨ Good wave accessibility even at low n|| ~ 1.47 
with launch position above midplane (150°)

¨ Peak of current profile around r/a ~ 0.65
¨ Results invariant to SOL losses due to good 

accessibility and strong single-pass damping
¨ Peak current drive efficiency of 1.3 MA / 20 MW

¤ ! ~ 4.0x1019 AW-1m-2 for local ne of 8x1019 m-3
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LFS scan: Ip max of 1.3 MA at ! ~ 
0.85 for (90°, n|| = -2.17)
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Results at small !
are multi-pass with 
low efficiency



LFS antenna location gives similar 
efficiency, but larger damping !
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¨ Similar efficiency vs. 
HFS launch, but 
damping at larger !
due to higher n||

¨ Can’t use lower n|| due 
to poor accessibility



LFS scan summary

¨ Best case efficiency is nearly identical to HFS 
launch, but at larger r/a ~ 0.85

¨ Poor accessibility limits penetration of lower n|| rays 
into the core plasma

¨ Multi-pass nature of the rays opens door to 
parasitic losses in the SOL at lower n||

¨ Peak current drive efficiency of 1.3 MA / 20 MW
¤ ! ~ 3.8x1019 AW-1m-2 for local ne of 7.6x1019 m-3
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Efficiency depends on BT sign for off 
mid-plane launch points (e.g. 150°)
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Best results for HFS + LFS synergy with 
65% power from LFS, 35% from HFS
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Ip max of 1.35 MA at (187.5°, 62.5°, n||1 = -1.375, n||2 = -1.68, 7 MW, 13 MW)
With enhanced collisions



HFS + LFS synergy current profile far 
off-axis for hybrid scenario
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7MW HFS + 13 MW LFS¨ Current efficiency remains 
high for HFS + LFS 
combined

¨ Current profile is peaked 
very far off axis

¨ No significant benefit as 
compared to LFS only



Steady-state scenario
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R0 = 7.2 m, a = 2.2 m, 
B0 = 6.5 T, Ip = 11 MA

ITB at mid-radius



Parametric scan for SS scenario shows 
similar optimal point as for the hybrid
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Far off-axis current
drive for these points



Scattering from ne fluctuations can 
change angle !n⊥ between k⊥ and ∇$
¨ Perpendicular wavenumber typically assumed to be 

aligned with ∇$ based on antenna spectrum
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¤ !1& ≈ tan56 7/78
¨ !n⊥ impacts evolution of k|| along ray

through poloidal mode number M9

%|| = ;/
<
,/
, + =-

>
,-
,

¤ Bonoli and Ott, Physics of Fluids 25, 359 (1982)

¤ Baek et al, AIP Conference Proceedings 2254, 030006 (2020)
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Impact of scattering from edge density 
fluctuations can be compensated
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HFS Launch (! = 150°) LFS Launch (! = 90°)

Adjusting n|| can maintain high current drive efficiency for any 
value of "n⊥



Conclusions

¨ >104 simulations performed with GENRAY/CQL3D 
to determine optimal LHCD launch point and n||

¨ HFS and LFS launch LHCD both generate ~ 1.3 MA 
/ 20 MW LHRF power
¤ Efficiencies similar
¤ HFS current profile peaks at ! ~ 0.65
¤ LFS current profile peaks at ! ~ 0.85

¨ CFETR scenario development favors mid-radius 
current drive vs far-off-axis current drive
¤ J. Chen, et al Nuc Fus 61 (2021) 046002
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Smaller ! would be 
even better!


