SCOPING STUDY OF LOWER HYBRID CURRENT DRIVE FOR CFETR

G.M. WALLACE¹, S.G. BAEK, P.T. BONOLI MIT PSFC, CAMBRIDGE, USA B.J. DING², M.H. LI, J. CHEN, L. LIU, C.B. WU ASIPP, HEFEI, CHINA S. SHIRAIWA PPPL, PRINCETON, USA

¹WALLACEG@MIT.EDU ²BJDING@IPP.AC.CN

IAEA-TECH/P7-17 28th IAEA Fusion Energy Conference, 14 May, 2021

The CFETR "hybrid" scenario

Goal: determine optimal LHRF parameters with parametric scans

- Scan comprises 5 parameters:
 - **n**₁₁, HFS antenna n_{11}
 - **n**₁₂, LFS antenna n₁₁
 - \bullet θ_1 , HFS antenna poloidal position
 - θ_2 , LFS antenna poloidal position
 - P_2/P_1 , ratio of power between HFS and LFS antennas
- πScope workflow used for parametric scans with GENRAY/CQL3D ray tracing/Fokker-Planck codes
- Takes considerable wall-clock time to run many simulations even with narrow range for each parameter (5 points x 5 parameters = 3125 simulations
- Fully automated n-D parameter scans will also be critical for building lookup table of EAST discharges w/ n₁ rotation due to scattering

Poloidal launch point defined by angle with respect to magnetic axis; strong Shafranov shift puts 90° on LFS

G.M. Wallace

LH system assumptions

- $f_0 = 4.6 \text{ GHz}$
 - VKC-7849B klystrons (as used on EAST) at 250 kW each
- $P_{LH} = 20 \text{ MW not including}$ reverse or side lobes
 - ~30 MW net power required with MJ or PAM antenna
 - ~160 klystrons needed with transmission losses & redundancy
- □ Full width of $n_{||}$ spectrum = 0.2

Conservative SOL profiles used in this study

- □ e-folding width of ~2 cm for n_e and ~5 mm for T_e to increase collision frequency
- High collisionality in SOL results in non-resonant collisional damping of waves which do not absorb on single-pass
- Safeguards against multi-pass damping scenarios for which ray tracing is less trustworthy

HFS scan: 1.3 MA at $\rho = 0.65$ for (150°, $n_{||} = -1.47$)

G.M. Wallace

HFS launch has good accessibility and damps at $\rho \sim 0.65$

- Higher B on HFS allows
 waves to penetrate
 directly to core plasma
- Little opportunity for losses in SOL to impact efficiency
- Low n_{||} can be used even with "lossy" SOL

HFS launch insensitive to width of $n_{||}$ spectrum $(\Delta n_{||})$ CFETR antenna spectral width ~ 0.13

HFS scan summary

- 9
- □ Good wave accessibility even at low $n_{||} \sim 1.47$ with launch position above midplane (150°)
- \square Peak of current profile around r/a ~ 0.65
- Results invariant to SOL losses due to good accessibility and strong single-pass damping
- □ Peak current drive efficiency of 1.3 MA / 20 MW □ $\eta \sim 4.0 \times 10^{19}$ AW⁻¹m⁻² for local n_{ρ} of 8×10¹⁹ m⁻³

LFS scan: I_{p} max of 1.3 MA at $\rho \sim 0.85$ for (90°, $n_{||} = -2.17$)

LFS antenna location gives similar efficiency, but larger damping ρ

 Similar efficiency vs.
 HFS launch, but damping at larger ρ due to higher n₁₁

11

Can't use lower n_{||} due to poor accessibility

LFS scan summary

- Best case efficiency is nearly identical to HFS launch, but at larger r/a ~ 0.85
- Poor accessibility limits penetration of lower n_{||} rays into the core plasma
- Multi-pass nature of the rays opens door to parasitic losses in the SOL at lower n₁₁
- □ Peak current drive efficiency of 1.3 MA / 20 MW □ $\eta \sim 3.8 \times 10^{19}$ AW⁻¹m⁻² for local $n_{\rm e}$ of 7.6×10¹⁹ m⁻³

Efficiency depends on B_T sign for off mid-plane launch points (e.g. 150°)

$$n_{||} = \frac{c}{\omega} \left(\frac{mB_{\theta}}{rB} + \frac{n_{\phi}B_{\phi}}{RB} \right) \quad \Rightarrow \quad \frac{dm}{d\theta}$$

13

 $\propto -n_{\parallel}q(r)\sin(\theta)$

Best results for HFS + LFS synergy with 65% power from LFS, 35% from HFS

G.M. Wallace

HFS + LFS synergy current profile far off-axis for hybrid scenario

- Current efficiency remains 7M
 high for HFS + LFS
 combined 6
- Current profile is peaked very far off axis
- No significant benefit as compared to LFS only

Steady-state scenario

G.M. Wallace

Parametric scan for SS scenario shows similar optimal point as for the hybrid

Scattering from $n_{\rm e}$ fluctuations can change angle $\xi_{n\perp}$ between k_{\perp} and $\nabla \psi$

Perpendicular wavenumber typically assumed to be aligned with $\nabla \psi$ based on antenna spectrum

$$k_{\perp} = \sqrt{k_{\rho}^{2} + \left(k_{\theta} \frac{B_{\phi}}{B}\right)^{2} + \left(k_{\phi} \frac{B_{\theta}}{B}\right)^{2}} \approx \sqrt{k_{\rho}^{2} + k_{\theta}^{2}}$$

$$\xi_{n\perp} \approx \tan^{-1} \frac{k_{\theta}}{k_{\rho}}$$

$$\xi_{n\perp} \text{ impacts evolution of } k_{\parallel} \text{ along ray}$$
through poloidal mode number M_{θ}

$$k_{\parallel} = \left(\frac{M_{\theta}}{r} \frac{B_{\theta}}{B} + \frac{N_{\phi}}{R} \frac{B_{\phi}}{B}\right)$$

Flux surface

Bonoli and Ott, Physics of Fluids 25, 359 (1982)

Baek et al, AIP Conference Proceedings 2254, 030006 (2020) G.M. Wallace

Impact of scattering from edge density fluctuations can be compensated

19

Adjusting $n_{||}$ can maintain high current drive efficiency for any G.M. Wallace

Conclusions

- □ >10⁴ simulations performed with GENRAY/CQL3D to determine optimal LHCD launch point and $n_{||}$
- HFS and LFS launch LHCD both generate ~ 1.3 MA / 20 MW LHRF power
 - Efficiencies similar
 - **\square** HFS current profile peaks at $ho \sim 0.65$

Smaller ρ would be even better!

- **\square** LFS current profile peaks at $ho \sim 0.85$ _
- CFETR scenario development favors mid-radius current drive vs far-off-axis current drive
 - J. Chen, et al Nuc Fus 61 (2021) 046002