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Goal: Validate NIMROD MHD QH-mode simulations 
with local perturbation measurements

• Focus on EHO in QH DIII-D 
discharge 163518 at   
2350 ms

• Hypothesis: saturated 3D 
fluctuations drive particle 
and thermal transport to 
maintain steady state 
pedestal profiles     
[Snyder NF 2007]

• How well can MHD modeling 
characterize the low-n 
perturbations observed 
during QH-mode?

[K. Burrell PoP 2016]
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Extended-MHD codes start from reconstructed state

• Initial plasma and magnetic configuration: 
reconstructed from measurements constrained by 
force balance  

• Assume: 2D evolution of this state is on transport time 
scale

– Transport requires effects outside the scope of MHD: e.g. neutral-
beam, high-k turbulence, neoclassical effects, IOL, neutral 
interaction

• Model: NIMROD code [Sovinec JCP 04] evolves 3D, 
nonlinear perturbations around 2D steady state 

– Perturbations may modify the axisymmetric (n=0) state
– Consistent with reconstruction when n=0 modification is small
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Best-fit reconstruction is stable → increase 
instability drive by reducing pedestal width

• EFIT based on “best fit” to 
experimental data is stable 
when ExB flow is included

• To destabilize: density and 
temperature gradients 
increased in the pedestal 
region

– Similar to varyped
• Nonlinear relaxation 

expected to relax plasma 
profiles back towards 
measured state
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Does one underlying drive better match experiment?

Simulations saturate to states with n=1 dominant, 
but span from laminar to turbulent 

1.4×∇p
exp                                                                                 

2.0×∇p
exp

Low-amplitude Laminar                    Large-Amplitude Turbulent
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1.4×∇p
exp                                    

2.0×∇p
exp

Density and temperature relax towards measured state

• Weakly driven case 
exhibits weak 
relaxation (profiles 
too steep)

• Strongly driven case 

exhibits strong 
relaxation

– Density transport greater 
than temperature 
consistent with [King et 
al., Phys Plasma 2016]

• Strongly driven case 
more consistent with 
measured profiles
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1.4×∇p
exp                                        

2.0×∇p
exp

Rotation profiles evolve from initial profiles 
→ impacts EHO frequencies

• Initial profile is ExB and 
neoclassical poloidal 
flows based on 
reconstruction

• With time dynamics, 
MHD-fluctuation-induced 
flows are generated and 
basic FSA quantities are 
compared

• Large deviation in 
strongly driven case 
impacts mode frequency
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Strongly-driven turbulent simulation shows large density perturbations

JRK: Move to 400 us
Show density movie from 145098

Density at 
~440μsec     
   

BES local to outboard 
mid-plane where flux 
compression smooths 
dynamics

2.0×∇p
exp
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Amplitude of BES measurements is bracketed by synthetic diagnostic 
analysis of simulations

• Both simulation and experiment transition from single 
to double peak structure when moving radially outward

• Frequencies are not consistent given flow profile 
modification from MHD fluctuations

Channel A
ρ

N
 ~ 0.95

Channel B
ρ

N
 ~ 0.98

Channel C
Outside LCFS
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Validation promising but imperfect; complicated by 

• Changes to magnetic surface location when 
increasing instability drive

– Need to keep {p,n,T}(R,Z) fixed for comparison to local 
measurements at fixed R,Z

– Not straight-forward with current profile redistribution 
which modifies ψ(R,Z) as profiles often specified as {p,n,T}
(ψ)

• Rotation profile modification confounds local 
diagnostic comparisons which rely on frequency 
analysis

• Next: consider other sources of momentum 
transport from effects outside the MHD model 
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Focus on 2D ion-orbit-loss and neutral momentum 
transport in DIII-D shot 164988

This shot has minimal 3D magnetic
Perturbation → tests 2D model equations
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FSA particle
loss rate

Without collisions no 
pitch-angle scattering 
into loss cone

Losses are limited by 
collisions and distance from LCFS

S is ‘orbit-squeezing’ factor 
that decreases IOL outside 
minimum of E

r
 well

IOL particle flux acts like a current

IOL leads to viscous forces &

co-current torque 

 Shaing et al., PFB 2 June (1990); Shaing PFB 2 Jan (1992); Shaing PFB 2 Oct (1992)

Ion-orbit-loss model from analytic work by Shaing
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Model equations predict large IOL torques at edge



14
King IAEA FEC 2020

Next: investigate torque from full plasma-neutral model

[Meier & Shumlak POP 19 072508 (2012) ]
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1D plasma neutral case demonstrates basic physics

• Ballistic expansion force is balanced by charge exchange and advection

• Particle source from wall is ionized inside pedestal
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2D neutral model with ion, electons and neutral fluids 
produces in/out board asymmetry in heat flux

Normal BT

(a-d)

Rev BT

(e-h)

• Asymmetry is not present without dynamic electron fluid
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Neutral torque is balances opposes IOL torque

IOL QH-mode fluct. torque

Neutral particle Neutral torque

QH-mode fluctuation
torque is from 
over-driven case
is comparable

Torques outside MHD are comparable and should be 
accounted for in MHD simulations
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Conclusions

• Validation QH-mode simulations scan the underlying drive

– Simulations bracket the fluctuation amplitude of BES observations

– Fluctuation-induced momentum transport modifies rotation

– Frequency comparison to BES measurements do not agree

• Sources of momentum transport outside the MHD model are large

– Ion-orbit loss produces a co-current parallel torque in the edge

– Calculation of the neutral CX force shows it balances the IOL torque

– The torque from the Maxwell and Reynolds stresses of the over-driven QH-
mode fluctuations is at most comparable to the IOL/neutral torques

• Incorporation of IOL/neutral torques is needed during nonlinear QH-mode 
simulation


