Flux driven pedestal formation in tokamaks: Turbulence simulations validated against the isotope effect

C. Bourdelle¹, G. De Dominici¹, G. Fuhr², P. Beyer², L. Chôné³, F. Cianfrani², G. L. Falchetto¹, X. Garbet¹, Y. Sarazin¹

¹ CEA, IRFM, F-13108 St-Paul-Lez-Durance, France

- ² CNRS, Aix-Marseille Univ., PIIM UMR7345, Marseille, France
- ³ Department of Applied Physics, Aalto University, Espoo, Finland <u>clarisse.bourdelle@cea.fr</u>

Ingredients for realistic L mode edge modelling

Key players for realistic L mode edge [Bourdelle NF2020]:

- Turbulence drive resistive Drift Waves on which larger β has a destabilizing impact [Bonanomi NF2019, De Dominici NF2019]
- $\vec{E} \times \vec{B}$ shear, key in formation of the edge transport barrier [<u>Burrell PoP 2020</u>], incl. neoclassical friction and realistic SOL E_r or at least realistic LCFS value for E_r

First self-consistent pedestal formation in 3D non-linear fluid flux-driven simulation including the following critical physical ingredients:

- 1) resistive electromagnetic Drift Waves and ballooning modes
- 2) E_r accounting for neoclassical friction on $V_{\theta}(v^*)$ with realistic L mode edge v^* from banana to Pfirsch-Schlüter regimes

As in experiments, the pedestal forms above a certain power threshold. As in experiments, this power threshold is lower for Tritium plasmas than for Deuterium plasmas. So far, flux driven pedestal formation in electrostatic: EMEDGE3D [Chôné PoP2014] and BOUT++ [Park PoP2015] and here electromagnetic EMEDGE3D [DeDominici, ArXiv2019]. More flux driven fluid codes should explore!!

EMEDGE 3D [Fuhr PRL2008, De Dominici NF 2019] Charge and energy conservation,

Pressure \propto T, i.e. iso-density

Ohm's law

including electromagnetic and diamagnetic effects E_r such that 0 at LCFS and with neoclassical friction on V_{θ}

DeDominici	, ArXiv2019
------------	-------------

50

 $2,5 \cdot 10^{19}$

flux driven pedestal formation captures isotopic effect

1

58

 $2.5 \rightarrow 3.5$

Flux driven pedestal formation above a certain source

Aix+Marseille

Er force balance, role of V_{θ} in L mode edge

Example at JET [Hillensheim PRL 2016] $\frac{\nabla P_i}{Z_i n_i}$ a good proxy for 20 CXRS (13.61 s) DBS, Vph=Vdia,e min(E_r) see AUG 10 CavedonNF2020 $E_r (kV/m)$ But... from $min(E_r)$ to (k< the LCFS $V_{\theta}(v^*)$ with ц DBS, Vnh=0 (13.6-13.8 s) ν^* from banana to P--10 $v_{\theta i} = k_i \frac{\nabla_r T_i}{e B_{i0}}.$ **S**! Shot 86470 Data shifted 2.1 cm radially -20 $\left(\frac{1.17 - 0.35 \nu_{i,*}^{1/2}}{1 + 0.7 \nu_{i,*}^{1/2}} - 2.1 \nu_{i,*}^2 \epsilon^3\right) \frac{1}{1 + \nu_{i,*}^2 \epsilon^3}$ 3.65 3.70 3.75 3.80 3.85 R (m)