The role of parallel connection length in power exhaust performance in DEMO **ID:1134**

UK Atomic Energy Authority

L. XIANG^{1*}, F. MILITELLO¹, D. MOULTON¹, F. SUBBA², L. AHO-MANTILA³, M. WENSING⁴, D. COSTER LUNT⁵, H. REIMERDES⁴, M. WISCHMEIER⁵

¹Culham Centre for Fusion Energy, ²Politecnico di Torino, ³Technical Research Centre of Finland, ⁴Ecole Polytechnique Fédérale de Lausanne (EPFL), ⁵Max-Planck Institut für Plasmaphysik

1. INTRODUCTION

- Larger margin to the boundaries of the operational space concerning core and power exhaust requirements is appreciated especially for reactor plasma.
- SOLPS-ITER simulations with are used: fluid neutral, bundled argon charge states, currents, diffusive coefficients $D_{\perp}=0.1m^2/$ s, $\chi_{\perp e,i}$ =0.1-0.3 m^2/s , no drifts. We aim to demonstrate the role of the connection length in Ο the outer divertor in core and power exhaust performance by investigating 4 configurations, shown bellow.

2.2. RADIATION DISTRIBUTION

- Longer connection length, higher upstream temperature (OMP, divertor entrance) like 2-point model predicts
- T_{eu} seemingly dependent on

$n_{e,sep} \le 0.6 n_{GW}, q_{\perp,peak} \le 5 M W m^{-2}, T_{t,peak} \le 5 eV, c_{Ar,sep} \le 1\%$ $\overline{}$ کے 1 200 ہو

The 4 configurations differ most in 2 measures:

- The connection length from outboard midplane (OMP) to the outer target, thus also the ratio between the connection length to the outer and to the inner target,
- The **poloidal flux expansion** at the outer target. 11.

2.1. OPERATIONAL SPACE

 Each configuration collapses on distinctive curve. XD has bifurcation, overlaps with SX, or SN (called 'high concentration branch').

- $n_{e,sep}$ because conductive heat flux varies at different density due to radiation upstream
- Same reason for large scatter in SN data.

1)

Radiation lower in the core, higher in the outer divertor in XD, Hybrid, SX with longer connection length than SN. Higher/comparable 2) radiation in divertor divertor in XD, Hybrid, SX despite lower concentration.

> Argon radiation 3)

dominants. Argon radiation fraction higher in core at higher concentration.

150

100

- 2. At same density $n_{e,sep}$, Hybrid, SX, XD have lower upstream argon concentration $\bar{c}_{Ar,sep}$, than SN. Vice versa is true.
- **3.** The curves of Hybrid, SX, XD lie below that of SN. The Hybrid curve lies between that of the SN and SX. With similar connection

5 eV front most close to the

- - Simulations at same density: SN has highest concentration also in the divertor, factor ~1.45-1.85 higher in outer divertor, ~2.85-3.85 higher in inner divertor than Hybrid, SX, XD.
 - ♦ $P_{dissipate} \propto c_{Ar}L_{int}$. Larger L_{int} compensates for lower of $c_{Ar} \Rightarrow$ higher/comparable radiation in outer/inner divertor in Hybrid, SX, XD

SN has higher enrichment in inner divertor, SX, XD has higher enrichment in outer divertor. \Rightarrow in/out asymmetry

5 eV front much closer to

the X-point.

his work was part funded by the RCUK Energy Programme [grant number EP/P012450/1]. This work has been carried out within the amework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under rrant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commiss

- > The longer connection length in outer divertor, the larger margin to the boundary values of the operational space is obtained.
- > Longer connection length to the outer target than to the inner target may cause bifurcation, risking losing the better performances.
- Longer connection drives higher temperature upstream
- > Higher temperature upstream may enable the divertor to radiate more. Configuration with longer connection length radiates less above the X-point owing to lower impurity concentration.

Acknowledgement

3. CONCLUSION

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053 and from RCUK [grant number EP/T012250/1]. The views and opinions expressed herein do not necessarily reflect those of the European Commission

*EMAIL: lingyan.xiang@ukaea.uk