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PLASMA-SURFACE INTERACTIONS IN THE STELLARATOR W7-X:
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Introduction to the Optimised Stellartor Wendelstein 7-X Plasma-Facing Components in W7-X

Optimised stellarator design with 5-fold symmetry magnetic topology in standard divertor configuration: Island Divertor with Test Divertor Unit (TDU)
e 2D cut at one lower divertor half module :
Magnetic field: 2.5 T (steady-state) S modules with 2 halfs

Heating power: 7.5 MW ECRH / 3.4 MW NBI y Divertor material: fine grain graphite

Major Radius: 5.5 m / Minor Radius: 0.53 m - Divertor area: 19 (25) m?
Island divertor for power and particle exhaust and impurity screening Max. divertor heat load: 10 MW/m?
Divertor target plates follow the magnetic islands geometry : No active cooling at this stage
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Plasma-Wall Interactions Processes
attached island divertor conditions in W7-X
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Key PWI questions:

horizontal

attached and detached divertor operation executed in 2 campaigns
OP A: ~3776 s (He+H plasma) | OP B: ~9054 s (~H plasma)
max. plasma duration: 100 s | max. input energy: 0.2 GJ

at the strike line in attached plasmas: T.~25€eV | n,~1.0x10"® m-3

target

ot = C erosion pattern / strength
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Transport = C deposition pattern /strength

= C migration paths
Deposition, mixing
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Can we interpret the plasma-wall interactions in W7-X?
What can be expected for 30 min. plasmas with actively cooled divertor? IR thermography: heat load footprint
Recommendations regarding the divertor operational regime? in standard magnetic divertor configuration

Erosion / Deposition Measurements Utilising Marker Divertor Target Elements

Multiple divertor target elements with Mo interlayer and C marker for net erosion / depostion information installed per campaing. Initial plasma operation (OP A) compromised by high impurity content (O, C) and H outgassing
2 locations on the vertical and 3 locations on the horizontal target plate in each of the ten half modules. residual water in graphite released during PFC heat-up by plasma impact

physical and chemical sputtering of graphite by O and H as well as C self sputtering
Image of target elements (top) emission oxide layers on first wall sputtered by plasma and charge exchange neutrals
5— 10 pm C Marker after W7-X plasma exposure spectroscopy oxygen partially pumped out between discharges in form of CO and CO,
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3D Simulation of Material Migration in Standard Configuration with ERO2.0
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Unfold C gross erosion and C deposition pattern in the divertor

C net erosion and net deposition areas are located close to each
other at the strike-line location in standard configuration

Comparison with post-mortem analysis (net) and C spectroscopy (gross)
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Conclusion for Long-Pulse Operation in W7-X

= plasma operation with the uncooled graphite test divertor provided vital information on the operational window and PWI processes in W7-X
= operational window widens with the application of boronisation, reducing the impurity production by oxygen / carbon ions on graphite

-~ 4
e » plasma operation in attached divertor conditions causes peak C erosion of more than 10 um or rates of 2 nm/s after bornisation
best documented plasma from PWI perspective is the standard divertor configuration used for more than 50% of the time in OP B
net C erosion follows the heat and particle footprint on the divertor target plates with local deposition zones away from the contact point
material migration paths studied with ERO2.0 and WallDYN-3D with predominant role of divertor in total C erosion and deposition pattern
e impact of the first wall on C migration under assessment (see C.P. Dhard PFMC 2021) => moderate local erosion/deposition observed
2 4
lemi' C net deposition [m~2s71]  x10%

considering only operation after boronisation and with negligble O level in the plasma (<0.1%): extrapolate to long-pulse operation
5. =« total accumulated H plasma time in standard configuration in OP B (4809s) equivalent ot almost 3 W7-X discharges of envisaged 30 min.
. A &y = total C erosion rate in the divertor is about 4.2 mg/s or 20g over the campaign which would convert to 7.6g C per 30 min. discharge

: 3 = the total C erosion as well as a the peak C erosion could hamper plasma operation and cause dust issues in campaigns with long pulses

Main characteristics reproduced and good
. quantitative agreement of peak erosion,
8t but re-deposition underestimated in ERO

= reduction of C erosion is advisable and could be achieved by transfer to detached divertor operation (see O. Schmitz et al. 2021 NF 61)
= predictive modelling with ERO2.0 and WallDYN-3D should be carried out to simulate PSI in long pulse discharges with attached and
detached divertor conditions
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