Characterization and sparse modeling of radiation collapse and density limit in LHD

Email: yokoyama.tatsuya17@ae.k.u-tokyo.ac.jp

Abstract

- Likelihood of occurrence of radiative collapse has been estimated in Large Helical Device (LHD) by machine learning techniques.
- The likelihood has been estimated with four feature parameters selected by sparse modeling: \(n_e \), CIV, OV, and \(T_{\rho \parallel < 0} \).
- Radiation collapse avoidance control system has been developed based on the collapse likelihood.
- Radiative collapse has been avoided in high-density hydrogen plasma by the control system successfully.

Background

Prediction and avoidance of radiative collapse

- Radiative collapse is one of the major cause of plasma termination in stellarator-heliotron plasma and limits plasma density.
- Prediction and avoidance of radiative collapse are important to improve operational density limit.[10]

Purpose of this study

- Development of the predictor of radiative collapse
 - Classify “close-to-collapse” state and “stable” state by support vector machine (SVM), which is one of machine learning models.
 - The classifier model is trained based on high-density experiment data in LHD.
- Optimization of the input plasma parameters by sparse modeling[27]
 - Development of a control system to avoid radiative collapse
 - The control system is applied to the LHD experiment.

Method

Training SVM classifier

- SVM has been used as binary classifier.
- Dataset has been constructed based on high-density experiment in LHD.
- Gas-puff fueling and NBI heating has been used in these experiments.
- The data has been labeled as either “stable” or “close-to-collapse”.

Pre-processing of training:

- Taking logarithms of dataset
- Min-max normalization

Quantification of collapse likelihood

- Feature of radiative collapse has been extracted by sparse modeling
 - Sparse modeling enables us to extract information from high-dimensional data by taking advantage of the inherent sparseness.
 - Extracted parameters: \(n_e \), CIV, OV, and \(T_{\rho \parallel < 0} \).
- Collapse likelihood has been quantified as the distance from boundary between “stable” or “close-to-collapse” classes.

Collapse avoidance in LHD

Validation of predictor model based on collapse likelihood[28]

- The predictor model has been validated with 535 discharges in LHD other than included in the dataset.
- In about 85% of collapse discharges, collapses have been predicted over 30 ms before they occur.
- False alarms are 5-10% of stable discharges.

Collapse avoidance control system

- A real-time control system to avoid radiative collapse has been developed based on the predictor model.
- When the likelihood exceeds threshold, gas puff is turned off and/or the electron cyclotron resonance heating (ECRH)[29] is turned on.
- A single board computer (Raspberry Pi) calculates has been used to calculate the collapse likelihood in real-time.
- For real-time control, \(T_{\rho \parallel < 0} \) has been replaced by \(T_{\rho \parallel} \), measured by electron cyclotron emission (ECE) measurement.

Conclusion

- The result of data-driven approach to radiative collapse has been applied to plasma experiment in LHD.
- Radiative collapse was successfully avoided by the control system.
- The likelihood will be updated with data in helium discharges.
- Understanding of physical background of radiative collapse based on the likelihood is in progress[31].

Acknowledgements

This work is supported by the National Institute for Fusion Science grant administrative budgets NIFS18KLPP051, and JSPS KAKENHI Grant NumbersJP19H05411 and JP19K05459.

References

Expression

<table>
<thead>
<tr>
<th>Parameter used in the dataset</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_e)</td>
<td>Little averaged electron density</td>
</tr>
<tr>
<td>(B_\rho / (D - nF))</td>
<td>Toroidal magnetic field at axis</td>
</tr>
<tr>
<td>(D \oplus \delta n)</td>
<td>Ratio of (D) ions to the sum of (H) and (D) ions</td>
</tr>
<tr>
<td>(I_{\nu e})</td>
<td>Absorbed input power</td>
</tr>
<tr>
<td>(P_{\nu e} / P_{\nu e})</td>
<td>Normalized radiation power</td>
</tr>
<tr>
<td>(\delta \omega)</td>
<td>Beta estimated from damaged energy</td>
</tr>
<tr>
<td>(\Delta \omega), (\psi_0)</td>
<td>Plasma shape parameters</td>
</tr>
<tr>
<td>CIII, CIV, OV, OVI, FeXVI</td>
<td>Impurity line intensity normalized by (n_e), (I_{\nu e}), ion saturation current</td>
</tr>
<tr>
<td>(T_{\rho \parallel < 0})</td>
<td>Plasma electron temperature at LCFS at vacuum</td>
</tr>
</tbody>
</table>

References