PHYSICS STUDIES OF CRYOGENIC PELLET AND TRACER-LOADED PELLET (TESPEL) INJECTIONS IN THE STELLARATOR TJ-II

K. J. McCARTHY*, N. PANADERO, I. GARCÍA CORTES, E. ASCASÍBAR, A. CAPPA, J. M. FONTDECABA, J. HERNÁNDEZ

SÁNCHEZ, M. LINERS, I. PASTOR, TJ-II TEAM

Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain

N. TAMURA, G. MOTOJIMA

National Institute for Fusion Science, Toki, Japan

RESULTS

ID: EX/P6-1138

*kieran.mccarthy@ciemat.es

ABSTRACT

Cryogenic H₂ pellets and TESPELs¹ are injected into TJ-II using a shared system. Strong fluctuations are detected by magnetic pick-up coils during, and for a brief period after, a H₂ pellet is injected into microwave- or NBI-heated plasma. A brief reduction in broadband magnetic fluctuations (20 – 500 kHz) is observed after an injection.

BACKGROUND

- •A variety of transitory effects are observed as a pellet travels through plasma in magnetic confinement devices.
- •One observation is short-lived increased activity in magnetic pick-up coils.
- •While such activity has been reported, the origin has not been considered.
- •Such magnetic activity is seen for H₂ pellets in ECRH and NBI heated plasmas of the stellarator TJ-II. This is not seen for impurity pellets.

EXPERIMENTAL SET-UP ON TJ-II

TJ-II

A heliac-type stellarator, R = 1.5 m, $B_0 \le 1.1$, designed to explore a wide range of rotational transforms ($0.9 \le \iota_0/2\pi \le 2.2$), $\Delta \iota/\iota < 6\% (\iota/2\pi = n/m (\iota is iota value, n and m are toroidal and poloidal helical winding numbers)².$

PLASMA PARAMETERS

$$\begin{split} & \mathsf{ECRH:} \ \tilde{N}_{e} \leq & 1.2 \times 10^{19} \ \text{m}^{-3}, \ \mathsf{T}_{e0} \leq & 2 \ \text{keV}, \quad \mathsf{T}_{i0} \leq & 80 \ \text{eV}, \quad t_{ecrh} \leq & 300 \ \text{ms}. \end{split} \\ & \mathsf{NBI:} \quad \tilde{N}_{e} \leq & 5 \times 10^{19} \ \text{m}^{-3}, \quad \mathsf{T}_{e0} \leq & 0.4 \ \text{keV}, \ \mathsf{T}_{i0} \leq & 120 \ \text{eV}, \ t_{nbi} \leq & 110 \ \text{ms}. \end{split}$$

PELLET INJECTOR SYSTEM

A 4-pellet pipe-gun type injector is available³. Only 0.66 mm (\leq 0.6×10¹⁹ H) & 0.76 mm (\leq 1.2×10¹⁹ H) diameter pellets are considered here.

A TESPEL (Tracer-Encapsulated Solid Pellets), $-(C_8H_8-)_n$, injector is piggy-backed to the upstream end of 1 line⁴. Flight paths pass close to the axis.

DIAGNOSTICS OF INTEREST

2 new arrays of magnetic pick-up coils follow the helical field coil as it winds around the central field coil. Each one consists of 32 sets of equally spaced coils, each set containing 1 poloidal, 1 radial & 1 toroidal coil, that extend toroidally along 1 quadrant⁵. The arrays are positioned close to the plasma column, one called *Superior*, the other *Inferior*.

Ihs: Sketch showing cryogenic & TESPEL injectors with guide tubes, diagnostics & ablation light systems. A flight path through the plasma (magenta) & closed magnetic flux surfaces for configuration 100_44_64 are shown. top rhs: Cross-section cut showing Inferior and Superior magnetic array positions in sector D7. Bottom rhs: Normalized plasma radius vs. rotational transform for 2 magnetic configurations. Principal rational surfaces are indicated.

ACKNOWLEDGEMENTS

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. It is partially financed by the Spanish MICINN (FIS2017 -89326-R, FIS2017-88892-P), NIFS/NINS under Formation of International Scientific Base & Network (KEIN1102 & KEIN1104), Young Researchers Supporting Program (UFEX106) & JSPS KAKENHI (JP17KK0121 & JP19H01881). Top & Middle: H_2 pellet injection into ECRH & NBI plasma. Bottom: TESPEL injection into ECRH plasma. Ihs: Time evolution of \tilde{N}_e , magnetic coil, ablation light & T_e at several radii. centre: Ablation light emission plus raw & smoothed output from a poloidal magnetic coil (blue and olive) vs. time after pellet entry into plasma. rhs: Magnetic spectrograph as a function of the several plasma is the several plasma of the several plasma of the several plasma.

HPI2 simulations of plasmoid acceleration (arrows) & trajectories (magenta) showing poloidal cross-section at sector B2 & closed magnetic flux surfaces (100_44_64). top lhs: $7.3x10^{18}$ H injected into ECRH discharge #49728. Top rhs: $2.2x10^{19}$ H injected into NBI-heated discharge #49751. bottom lhs: $290 \ \mu m$ TESPEL injected into ECRH discharge #50404. bottom rhs: Singular Value Decomposition analysis of multi magnetic -coil data revealing dominant 8/5 mode ($\Delta \phi = 45^{\circ}$).

OBSERVATIONS

- Strong fluctuations (50 to 80 kHz) are excited in magnetic coils by H_2 pellets. Their presence is independent of the heating method.
- These occur as a H_2 pellet traverses the outer plasma region.
- Broadband magnetic fluctuations (50 to 500 kHz) reduce significantly for several milliseconds after injection of either pellet type.

FINDINGS

- Oscillations arise due to deceleration of outward drifting plasmoids, that detach in the core, near the 8/5 rational surface ($\rho = 0.75$). Analysis of magnetic array signals confirm that a 8/5 mode is excited. Abrupt steepening of the local pressure gradient gives rise to a short-lived magnetic instability followed by magnetic reconstruction once plasmoid homogenization is completed. HP12 simulations support this argument^{6,7}.
- 2nd order enhanced ECC damping causes abrupt plasmoid breaking⁶. - Similar activity is not seen for TESPEL as plasmoids do not reach ρ = 0.75 due to reduced plasmoid outward acceleration.
- The reduction in broadband magnetic fluctuations appears to be related to the rapid drop in T_{e} . A similar effect is seen for electrostatic fluctuations.

REFERENCES

- [1] S. Sudo, J. Plasma Fusion Res., 69 (1993) 1349.
- [2] E. Ascasíbar et al., Nucl. Fusion **59** (2019) 112019.
- [3] S. K. Combs et al., Fusion Sci. Tech. 64 (2013) 513.
- [4] N. Tamura et al., Rev. Sci. Instrum. 87 (2016) 11D619.
- [5] E. Ascasíbar et al., in preparation for Rev. Sci. Instrum.
- [6] F. Köchl et al., EUROfusion Preprint EFDA-JET-PR(12)57 (2012).
- [7] N. Panadero et al., Nucl. Fusion 58 (2018) 026025.