Improved Performance of ECRH by Real-Time Deposition Location Control and Perpendicular Injection in LHD

Toru Tsujimura¹

R. Yanai¹, K. Tanaka¹, Y. Yoshimura¹, T. Tokuzawa¹,², M. Nishiura¹, R. Sakamoto¹,², G. Motojima¹,², S. Kubo¹, T. Shimozuma¹, H. Igami¹, H. Takahashi^{1,2}, M. Yoshinuma¹, S. Ohshima³, LHD Experiment Group¹

¹National Institute for Fusion Science, ²The Graduate University for Advanced Studies, ³Kyoto University so F 28th IAEA Fusion Energy Conference, 10-15 May 2021, Virtual

(LHD) **Electron Cyclotron Resonance Heating**

Large Helical Device

- (ECRH) Inject mm wave to heat plasma electrons through cyclotron resonance
- Produce high-temperature plasma almost without plasma currents Local heating to control pressure profiles and current density profiles
- Contribute to transport physics
- Candidate of external heating sources for reactors, but dependent on developments of gyrotrons

Maximizing single-pass absorption is important in high-power long-pulse operation Courtesy of H. Takahas $n_{\rm a,fir} [{\rm x}10^{19} \, {\rm m}^{-3}]$

Adjustments of ECRH launcher settings

- ▶ to produce high-performance plasma
- ► to realize desired power deposition profiles ► to decrease the stray radiation level in the vessel

First walls are reinforced with Mo Effect of refraction mitigated on the opposite side of launchers. compared to injection from U port Contribution to ECCD experiments Courtesy of Y. Yoshimura

O1-mode ECRH perp. injected from 2-0 port

Real-time control of the deposition location of ECRH functioned 5/16 properly to improve heating efficiency at high density

0.2

0.5

g° 0.5

- Needs of transport studies for isotope effects of high-ne ECRH
- 77 GHz rarely used for transport studies at high n_e compared to 154 GHz
- Standard obl. injection from 2-0 sensitive to the effect of refraction
- higher absorption successfully maintained longer due to the realtime deposition location control up to 3×10¹⁹ m⁻³ *
- deposition location kept in the plasma core region
- dominant multi-pass absorption above 3×10¹⁹ m⁻³
- **➡** Leading to the necessity of perpendicular injection in the
- *T. li Tsujimura *et al.*, FED **153** (2020) 111480

Perp. injection can be an efficient heating method

 $R_{ax} = 3.75 \text{ m}$

injection

O-port

- Standard obl. injection is sensitive to refraction by high-ne plasma.
- Perp. injection is more insensitive to the effect of refraction to be verified with
- Unabsorbed transmitted waves to divertor regions are expected to be minute in principle.
- ► Similar heating method in tokamaks and W7-X, or FFHR-c1 ► Available only in the increased *B* field with sub-cooled helical coils

Plasma was sustained with 154 GHz

Higher modulated T_{e0} was observed.

The real-time interlock system was developed with FPGA in a CompactRIO controller

(b) Constant $\alpha = 45^{\circ}$

S. A. Bozhenkov et al,

NF 60 (2020) 066011

T. li Tsujimura et al., FED 153 (2020) 111480

Perp. injection showed better central heating

Perpendicular injection

 Refraction and Doppler-shifted absorption in oblique propagation cause broadened deposition.

 $R_{\rm ax} = 3.6 \text{ m}, B_{\rm t} = 2.75 \text{ T}$ 2-OLR, 77 GHz, $P_{\rm in} = 0.486 \text{ MW}, 23 \text{ Hz modulation}$

Control ON

w/o control (#150429)

 Analysis of modulation ECE showed the deposition shifted outward to $r_{\rm eff}/a_{99}$ ~ 0.7 in the case of 2×10^{19} m⁻³ and obl.

(e) w/o conti

Calculation of deposition profiles by the LHDGauss code shows better central heating in the case of perp. injection.

Perp. injection showed better heating efficiency 🏾

Absorbed power is higher by perp. injection for $n_e > 3 \times 10^{19}$ m⁻³.

→ Contribute to transport studies in $n_{\rm e}$ < 5×10¹⁹ m⁻³ by gas puffing

T. li Tsujimura et al., NF 61 (2021) 026012

Incident mm wave couples to EC waves with O and X modes under their orthogonality • Mode purity: $\eta_{\sigma} = \cos^2(\alpha - \alpha_{\sigma})\cos^2(\beta - \beta_{\sigma}) + \sin^2(\alpha - \alpha_{\sigma})\sin^2(\beta + \beta_{\sigma}), \quad \sigma = O, X$

(a) Constant $\beta = 0$

Polarization optimized for perp. injection

77 GHz, 2-OUR, $P_{in} = 0.792 \text{ MW}$

• Linear polarization of $(\alpha, \beta) \sim (45^{\circ}, 0^{\circ})$ was optimum to excite the pure O mode in low density plasma of ~1.5×10¹⁹ m⁻³, as expected from mode content analysis using the LHDGauss code.

Promotion of comparative studies between devices

in high n_e ECRH plasma

#160940, $R_{ax} = 3.6 \text{ m}$, $B_{t} = 2.85 \text{ T}$

T. li Tsujimura et al., NF 61 (2021) 026012

at R = 3.646 m

T. li Tsujimura *et al.*, NF **61** (2021) 026012

Time (s)

Higher T_{e0} achieved by perp. injection

T. li Tsujimura et al., NF 61 (2021) 026012

- 1 MW injection without modulation
- Plasma sustained by other two 154 GHz gyrotrons with 1 MW each
- T_{e0} increased from 4 keV to 6 keV by perp. injection
- **Approx. 2 keV increment** compared to oblique injection
- Contribute to extending high T regime

High ne ECRH plasma obtained by multiple pellet injection

- ECRH plasma with $n_{\rm e0} \sim 8 \times 10^{19}$ m⁻³ was successfully sustained after injection of three consecutive hydrogen pellets for the first time in LHD
- Hollow n_e profiles by gas puffing changed to rather peaked ones.
- Equipartition heating is significant in high n_e regime: $T_{i0} \sim T_{e0} \sim 1 \text{ keV}$
- Contribute to comparative studies in transport between W7-X and LHD and to helical reactor designs T. li Tsujimura et al., NF 61 (2021) 026012

High n_e ECRH plasma with $T_{e0} = T_{i0}$ was compared with W7-X high n_e plasma as a reference: ~half heating power, ~same density, ~1/3 ion temperature, ~half plasma stored energy

 $P_{\text{ECH}} = 2.79 \text{ MW}, n_{\text{e0}} \sim 7.5 \times 10^{19} \text{ m}^{-3}, T_{\text{i0}} \sim 1 \text{ keV}, W_{\text{p}} \sim 0.6 \text{ MJ}, P_{\text{ECH}} = 5.0 \text{ MW}, n_{\text{e0}} \sim 8 \times 10^{19} \text{ m}^{-3}, T_{\text{i0}} \sim 3.6 \text{ keV}, W_{\text{p}} \sim 1.1 \text{ MJ}, T_{\text{e0}} \sim 1.1 \text{ MJ}, T$

- ~same energy confinement time ~1/4 triple product

0

T. li Tsujimura et al., NF 61 (2021) 026012

- Comparison with ISS04 scaling
- Discharges over the density limit transiently after pellet injection
- Experiment data in high n_e ECRH plasma will be expanded.

T. li Tsujimura et al., NF 61 (2021) 026012

H. Yamada et al.,

NF 45 (2005) 1684

Future plan: proposal of O-mode perpendicular injection on the vertically-elongated cross section

- Comparison of ray-tracing calculations at $n_{e0} = 7 \times 10^{19} \text{ m}^{-3}$
- New perp. injection heating on the vertically elongated cross section can be available up to plasma cutoff density of 7.4×10¹⁹ m⁻³.
- Peripheral heating of obliquely-injected X-mode can be available up to left-hand cutoff density.

Summary

- A method of perp. injection was developed in order for the EC wave to be more insensitive to the effect of refraction in LHD.
- The achieved T_{e0} in the case of perp. injection was about 2 keV higher than that in the case of oblique injection for $n_{\rm e0} \sim 1 \times 10^{19}$ m⁻³ by 1 MW injection.
- With such improved performance of ECRH, high density ECRH plasma of $n_{e0} \sim 8 \times 10^{19}$ m⁻³ was successfully sustained after multiple hydrogen pellet injection.
- This method as well as the real-time deposition location control for efficient first-pass absorption in the plasma core region are beneficial not only for preventing damages of in-vessel components during long-pulse operations but also for extending high T operational regimes and precise transport studies.
- Further improvement of ECRH performance up to plasma cutoff n_e is envisaged by perpendicular injection on the vertically-elongated cross section.

This work was supported in part by the National Institute for Fusion Science under Grants ULRR027 and KLPH038, and by JSPS KAKENHI Grant Numbers JP16K18338 and JP19K14687.