Max-Planck-Institut für Plasmaphysik

First neutral beam experiments on Wendelstein 7-X

S. Lazerson^{1*}, D. Hartmann¹, P. Poloskei¹, A. Spanier¹, O. Ford¹, L. Vanó¹, N. Rust¹, P. McNeely¹, S. Äkäslompolo², K. Ogawa³, M. Drevlak¹, C. Slaby¹, Y. Turkin¹, S. Bozhenkov¹, N. Harder¹, B. Heinemann¹, D Holtum¹, W. Kraus¹, R. Nocentini¹, G. Orozco¹, R. Riedl¹, C. Hopf¹, J. Knauer¹, K. J. Brunner¹, M. Hirsch¹, E. Pasch¹, M. Beurskens¹, H. Damm¹, G. Fucherts¹, P. Nelde⁴, E. Scott¹, N. Pablant⁵, A. Langenberg¹, K. Ewert¹, P. Traverso⁶, P. Valson¹, U. Hergenhahn¹, A. Pavone¹, K. Rahbarnia¹, T. Andreeva¹, J. Schilling¹, C. Brandt¹, U. Neuner¹, H. Thomsen¹, N. Chaudhary¹, U. Hoefel¹, T. Stange¹, G. Weir¹, N. Maruschenko¹, M. Jakubowski¹, A. Ali¹, Y. Gao¹, H. Niemann¹, A. Puig Sitjes¹, R. Koenig¹, R. Wolf¹, and the W7-X Team¹

1 Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany 2 Aalto University, 00076 Aalto, Finland 3 National Institute for Fusion Science, Toki, Japan 4 Technische Universität Berlin, 10623, Berlin Germany 5 Princeton Plasma Physics Laboratory, 08542 Princeton, NJ, USA 6 Auburn University, 36849, Auburn, AL, USA

Introduction

In the previous divertor campaign on Wendelstein 7-X (W7-X) the first experiments with neutral beam injection (NBI) were performed.

- 2 of 4 spruces in NI21 beam box
- Hydrogen injection at 55 keV
- 5s of injection achieved

NBI only discharges A1 C1 D1 D5 E5 ECCD + off-axis Discharges heated only by NBI exhibit different characteristics Continuous density rise • Strong core density peaking [10] 10] 10] Density Evolution (20181009.043) r/a=0.05 -r/a=0.15 r/a=0.25

Three dimensional depiction of the W7-X NBI, plasma and some first wall structures.

NBI Injection into ECRH plasmas

Experiments began with injection of NBI into ECRH plasmas

- Predictions of wall loads necessitated a stepped approach
- ECRH plasmas allowed for careful control of plasma parameters
- NBI injection shows evidence of density increase at all radii
- Temperature profiles unchanged.
- High iota configuration allows for quantitative wall load comparison
- No damage to steel panels seen.

ECRH for density control

Reintroduction of ECRH clamps density rise

- 1-MW O2 ECRH added at 3s
- Core peaking suppressed
- Density rise arrested

r/a=0.35

01 × 10

Density

200

-200

-400

-600

-800

-1000

-1200

r/a=0.05 r/a=0.15 \leq

• Ion temperature > 1.5 keV momentarily

Density evolution showing reintroduction of ECRH killing the density rise and reducing density peaking in the core.

W7-X 20181009.034 | UTC: 13:10:00 | T0: 1539090600233392501 A1 C1 D1 D5 E1 E5 ECCD + off-axis [MW] – P_{ECRH}setp \cap ---- sniffer n_{e(TSvol2v10)} [m⁻ gas (Ar H2) n setpoint • T_{e (TS vol2 v10)} [keV — Τ_{e (ECE13)} T_{e (ECE24)} i0 (XICS v06) Σ H/(H+He) line int. ratio 10² — inboard outboard — core rad. KJM+258 w7x ref 340 trim: -81 33 100 32 -81 5.0 0.0 1.0 2.0 3.0 6.0 4.0 t-t₁ [s] 05:38:45 2020 - version 1.3 - contact: astechow@ipp.mpg.de Overview plot of a discharge where 1MW of ECRH is added to an

NBI only discharge to bring back density control.

Future upgrades

NBI Heating Upgrade (Std. Conf ~6x10¹⁹ m⁻³)

*Corresponding author: <u>samuel.lazerson@ipp.mpg.de</u> 28th IAEA Fusion Energy Conference 10-15 May 2021

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

