2D distribution of plasma potential and density in the ECRH and NBI plasmas in the TJ-II stellarator

L.G. Eliseev¹, A.V. Melnikov^{1,2,3}, P. O. Khabanov¹, M. A. Drabinskiy^{1,2}, C. Hidalgo⁵, A.S. Kozachek⁴, A.A. Chmyga⁴, N.K. Kharchev¹, J.M. Barcala⁵, A. Cappa⁵, D. López-Bruna⁵, U. Losada⁵, G. Martin⁵, K.J McCarthy⁵, F. Medina⁵, A. Molinero⁵, J.L. de Pablos⁵, I. Pastor⁵ and TJ-II team⁵

¹National Research Centre 'Kurchatov Institute', Moscow, Russia, ²Moscow Institute of Physics and Technology, Dolgoprudny, Russia, ³National Research Nuclear University MEPhI, Moscow, Russia, ⁴Institute of Plasma Physics, NSC KIPT, Kharkov, Ukraine, ⁵National Fusion Laboratory, CIEMAT, Madrid, Spain

Eliseev_LG@nrcki.ru

ABSTRACT

- 2D plasma potential distribution was measured in the ECRH plasmas of TJ-II for the first time in a wide area of poloidal cross-section.
- Equipotential lines are consistent with vacuum magnetic flux surfaces, 2D potential distribution is symmetric with a maximum at the plasma center
- Plasma potential and density RMS are not fully symmetric, effect is stronger for low-density case: at the mid radius (area of the maximum density)
 RMSφ~15V at LFS vs ~20V at HFS, RMS δn_e/n_e~2% at LFS vs ~ 3% at HFS.
- TJ-II plasmas well diagnosed by HIBP present unique platform for the validation

OUTCOME

Plasma potential and density profiles evolution

of the theoretical models for transport and turbulence in 3D devices

BACKGROUND

- 2D mapping is aimed to validate the recent theories and GK modeling predicting the poloidal symmetry breaking for plasma potential and density turbulence [1].
- The first experiments aimed at obtain the 2D distribution of plasma potential were performed in TJ-II using Heavy Ion Beam Probe (HIBP) with the variation of Cs+ probing beam plasma entrance angle and energy in the range **128-148 keV** [2].
- Comprehensive study to characterize 2D structures of plasma potential and density mean-value distributions and fluctuations in TJ-II has been recently performed by varying the beam energy in a wider range **100-150 keV**.

Experimental setup

TJ-II stellarator

R = 1.5 m, *a* = 0.22 m, B_0 = 0.95 T ECRH (two 53.2 GHz ≤300 kW gyrotrons) NBI (two 600 kW H₂ injectors, E=40 keV)

HIBP

- Cs⁺ ions with energies E_b up to 150 keV
- Probing beam current up to $250\ \mu A$
- 5-slit energy analyzer:
- Full radial scan from LFS(ρ=1) to HFS (ρ= -1)

(a) Plasma potential profiles (b) T_e profiles by TS (c) n_e profiles by TS

2D distribution of plasma potential

Potential contour plot covers about one half of the plasma poloidal cross-section:

ID: 680

- the maximum of 2D potential distribution (~ 1000 V; ~ 200 V) is located at the magnetic axis
- equipotentials are **consistent** with vacuum magnetic flux surfaces
- 2D potential distribution is symmetric (LFS-HFS and up-down)

2D distribution of plasma potential fluctuations

- the maximum of 2D RMS distribution is located at the magnetic axis (~ 30 V, ~ 15 V) and at the edge (~ 40 V, ~ 30 V)
- equipotentials are basically consistent with vacuum magnetic flux surfaces
- 2D distribution is not fully symmetric: at the mid-radius ~ 15 V, ~ 12 V (LFS) vs ~ 20 V, ~ 15 V (HFS)

SUMMARY

Fluctuation processing

2D distributions of fluctuations were obtained using integration of PSD spectrogram in a spectral band. From Parseval theorem we can estimate the RMS in the arbitrary spectral band as

$$RMS^{band}(t) = \sqrt{\frac{1}{f_{Nyq}} \int_{f_{min}(t)}^{f_{max}(t)} S(f,t) dt}$$

where S(f, t) is PSD of studied signal, fNyq is Nyqvist frequensy and $[f_{min}(t), f_{max}(t)]$ is spectral band. The same method can be applied for the broad-band turbulence (multiband case).

(a) Spectrogram of the plasma potential with selected AE mode, (b) time slices of the spectrogram, (c) temporal evolution of the AE amplitude (=√2·RMS)
(d) Radial profile of the AE amplitude

2D distribution of plasma density fluctuations

- the density perturbation has a local maximum at the centre (~ 3%, ~ 2.5%) and maxima at the edges (LFS and HFS) up to 7% and 15%
- the level of the density perturbation is asymmetric, it is lower in LFS (~ 2%, ~ 1.5%) in contrast to HFS (~ 3%, ~ 2%) near mid radius area of the maximum density

The second state of the

2D distribution of the broad-band RMS (a) for plasma potential (b) for $\frac{I_{tot}}{I_{tot}} \approx \frac{\tilde{n}_e}{n_e}$ and comparison of the broad-band RMS in ECRH and NBI regimes for (c) plasma potential and (d) beam current $\frac{\tilde{I}_{tot}}{I_{tot}}$

ACKNOWLEDGEMENTS / REFERENCES

• Kurchatov team was supported by Russian Science Foundation, Project 19-12-00312. AVM was partly supported by Competitiveness program of NRNU MEPhI.

2D plasma potential distribution was measured in the ECRH plasmas of TJ-II for the first time in a wide area of vertical cross-section in ECRH and NBI plasmas.
In both ECRH and NBI plasmas equipotential lines are consistent with vacuum magnetic flux surfaces, 2D potential distribution is symmetric (LFS-HFS and up-down) with local extrema at the plasma centre.

In low-density (ne=0.5-0.8·10¹⁹m⁻³) ECRH plasmas potential and density RMS are not fully symmetric, the effect is stronger for lower-density case: at the mid radius (area of the maximum density) broadband turbulence RMSφ ~ 15 V at LFS versus ~ 20 V at HFS, RMS ne ~ 2% at LFS versus ~ 3% at HFS. In the NBI plasmas with the density raise the asymmetry is decreasing and finally vanishing at ne=1.2-1.3·10¹⁹m⁻³.
 2D distribution of the NBI-induced Alfven eigenmodes show asymmetric structures: contrary to broadband turbulence AE-associated potential perturbation dominate in the LFS with a factor up to 1.7 respect to the HFS.