Effect of Magnetic Configuration on Energy Confinement and Energetic-Particle-Driven MHD Modes in Heliotron J

ID: 740 K. Nagasaki (Kyoto Univ. Japan)

Effect of bumpiness

- The stored energy is maximal in the medium-bumpiness configuration in which neoclassical transport is reduced.

\[\varepsilon_b = 0.22 \text{(Ultra high)} \]
\[\varepsilon_b = 0.19 \text{(Very high)} \]
\[\varepsilon_b = 0.15 \text{(High)} \]
\[\varepsilon_b = 0.06 \text{(STD)} \]
\[\varepsilon_b = 0.01 \text{(Low)} \]

<table>
<thead>
<tr>
<th>(W_b/n_e) (\times 10^{-19} \text{ kJ m}^{-3})</th>
<th>(\varepsilon_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECH-only plasma</td>
<td>(\varepsilon_b = 0.22)</td>
</tr>
</tbody>
</table>
| \(P\text{EC} = 250 \text{ kW} \) \(n_e = 1.0 - 1.2 \times 10^{19} \text{ m}^{-3} \) |}

Energetic-Particle-Driven MHD Modes

- The \(n/m=1/2 \) EPM & \(n/m=2/4 \) GAE are successfully reproduced by MEGA code.
- Some EP-driven MHD modes are mitigated with ECH, and some modes are not.

Effect of rotational transform

- The energy confinement is degraded as the rotational transform increases, which contradicts the ISS04 scaling \((\nu/2\pi)^{0.41}\).