# **Turbulent transport in the Scrape-Off Layer of Wendelstein 7-X**

#### Y. Narbutt<sup>1</sup>, C. Killer<sup>1,\*</sup>, O. Grulke<sup>1</sup>, W7-X Team<sup>1</sup>

#### <sup>1</sup>Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany

#### **Motivation**

- anomalous cross-field transport in the SOL is widely assumed to be turbulent
- self-consistent interplay of turbulent transport and profile shape in the SOL  $\rightarrow$  expect  $\Gamma_r \sim \nabla p$  (if turbulence is driven by local gradients, i.e. no turbulence spreading

#### **Experimental approach**

- Reciprocating Langmuir probe measurements in the W7-X SOL  $\rightarrow$   $T_{e}$ , *n* profiles
- poloidal array of  $I_{sat}$ ,  $V_{fl}$  pin  $\rightarrow \Gamma_r = \tilde{n} \tilde{v}_r = \tilde{n} \tilde{E}_{pol}/B$

#### Main results

• generally:  $\Gamma_r \sim \nabla p$  holds radially across the SOL, over a wide range of magnetic configurations, plasma scenarios  $\rightarrow$  turbulent transport is driven by local gradients

# Flux-gradient relation ( $\Gamma_r vs \nabla p$ ) in the W7-X SOL

- data base: >200 measurements in >100 plasma programs, including different magnetic • configurations and plasma conditions ( $P_{FCRH}$ =[1-6]MW,  $n_{dl}$ =[2-12]e19m<sup>-2</sup>)
- sliced into 5ms segments (probe can be considered approximately stationary)





• exception: in magnetic islands, plasma profiles can be flattened and or 3D. Here,  $\Gamma_r \sim \nabla p$  does **not** hold  $\rightarrow$  indicates additional transport processes



| - $ abla p$ (Pa/cm)                                                                                                                                                                                                                  | - $ abla p$ (Pa/cm)            | - $\nabla p$ (Pa/cm)      | - $ abla p$ (Pa/cm)                           | - $ abla p$ (Pa/cm)                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|-----------------------------------------------|-------------------------------------------------------------------------|
| only I <sub>cc</sub> >0 <i>(control coil, manipulate island size</i> data appears linear                                                                                                                                             | s good agreem<br>but slope dep | nent with linear relation | ation $\Gamma_r$ vs $ abla p$ , configuration | $\Gamma_r \sim \nabla p$ , but exact relation unclear (few data points) |
| <ul> <li>→ <math>\Gamma_r \sim \nabla p</math> holds mostly, but magnetic configuration (even island size)seems to play a role</li> <li>→ investigate possible role of connection lengths, which depends on configuration</li> </ul> |                                |                           |                                               |                                                                         |
| same data as above, but L <sub>c</sub> color coded, smaller axis limits                                                                                                                                                              |                                |                           |                                               |                                                                         |
| no clear                                                                                                                                                                                                                             | Standard High                  | Mirror High Iota          | Low Iota                                      | Limiter 100                                                             |



# **Typical SOL profiles**

one profile for each magnetic



#### **SOL Profiles from Langmuir probes**

- compare classic swept and triple probes
- generally good agreement, but swept probe unreliable in far SOL
- $\rightarrow$  use triple probe, smoothed by polynomial fit, for further analysis





- configuration (not identical heating / fuelling scenarios)
- flattening / local peak in  $T_{e}$ , n profiles in standard configuration
  - $\rightarrow$  aligns with the transition between short and long L<sub>c</sub> part of the island

### **Turbulent transport as** diffusive process

- for modeling purposes, turbulent transport is often considered as a diffusive process  $D = \Gamma_r / \nabla n$
- here:  $D = [0.1 0.5] \text{ m}^2/\text{s}$
- $\rightarrow$  this is relatively small compared to typical EMC3-EIRENE simulations, which assume  $D = [0.5 - 1.5] \text{ m}^2/\text{s}$



perturbation from swept probe

>50kHz: strong, coherent modes

\* Corresponding author: carsten.killer@ipp.mpg.de 28th IAEA FEC 2021

![](_page_0_Picture_43.jpeg)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

![](_page_0_Picture_45.jpeg)