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Background
• The Dimits shift is the shift between the linear primary-instability threshold and the actual onset of turbu-
lent transport seen in gyrokinetic simulations [1].

• Zonal flows (ZFs) are believed to suppress drift-wave (DW) turbulence within the Dimits shift. Such ZFs
must be stable to the tertiary instability (TI) [2].

• The TI mode in electrostatic DW turbulence tend localize near the extrema of the ZF velocity U(x), as
seen in many simulations using different models [2, 3, 4].

Motivation: localized TI modes in the mHWE (resistive electrostatic DW turbulence)
• The mHWE describes 2D DW turbulence immersed in a uniform magnetic field along z:

(∂t + ẑ ×∇ϕ · ∇)w = κ∂yϕ− D̂w, (∂t + ẑ ×∇ϕ · ∇)n = α(ϕ̃− ñ)− κ∂yϕ− D̂n. (1)

Here, ∇ = (∂x, ∂y), ϕ is the electrostatic potential fluctuation, n is the density fluctuation, w .
= ∇2ϕ− n, κ

models density gradient, α is the “adiabaticity parameter”.
• Denote 〈. . . 〉 as the zonal average (average in y). The zonal average of Eqs. (1) are

∂tU = −∂x〈ṽxṽy〉 − D̂U, ∂tN = −∂x〈ṽxñ〉 − D̂N, (2)

where U(x, t)
.
= ∂x〈ϕ〉, N(x, t)

.
= 〈n〉, and (ṽx, ṽy) = ẑ ×∇ϕ̃.

Figure 1: MHWE simulations with α = 5, κ = 12, and D̂ = 0.1∇4. (a) A snapshot showing w̃ (color), U (solid
line), and κeff

.
= κ− ∂xN (dashed line). (b) Evolution of DW and ZF energy, showing predator–prey oscillations.

Theory: tertiaty instability in the modified Hasegawa–Wakatani equations

• Assume a zonal state U(x) = u cos qZx and N(x) = 0, and consider a perturbation w̃ = Re[ψ(x)ei(pyy−ωt)]
on top. The linearized mHWE (1) leads to

ωψ = Ĥψ, Ĥ = py[U + (κ + U ′′) ˆ̄p−2]− iD̂, ˆ̄p2 .
= p̂2

x + p2
y +

iα + pyκ

iα + iD̂ + ω − pyU
, p̂x

.
= −i

d

dx
. (3)

• Eigenmodes are found numerically, and we calculate the corresponding Wigner function W (x, px)
.
=∫

ds e−ipxsψ(x + s/2)ψ(x− s/2). It is found that W are localized at

x = xn
.
= nπ/qZ, px = 0, n = 0,±1,±2, . . . . (4)

They correspond to the extrema of U . Even n: trapped mode, odd n: runaway mode. [10, 11].
• Approximate U as U ≈ U0 + Cx2/2, and Weyl-expand Ĥ as Ĥ ≈ H+ λp p̂

2
x + λx x

2, where the coefficients
are given in Ref. [5]. This leads to an harmonic-oscillator equation:

−λpψ′′ + λx x
2ψ = (ω −H)ψ. (5)

• Eigenmodes are given by Hermite polynomials Hm, where m = 0, 1, ...:

ψm = e−
x2

2λHm(x/
√
λ), ωm = H + (2m + 1)λxλ. (6)

• The two modes with m = 0 (C ≷ 0) are most unstable. The growth rates are:

γTI
.
= Imω0 = γPI + ∆γ(C), ∆γ = γPI C/κ + Im(λxλ), γPI = pyκ/p̄

2
0 − iD0. (7)

At C = 0, γTI reduces to γPI. Therefore, the TI is a primary instability modified by the ZF.

Figure 2: (a) Runaway and trapped mode structures: numerical (color) versus analytical (dashed contours) at α = 5,
κ = 12, qZ = 0.3, u = 10, and py = 1. (b) Same mode structures in phase space: Wigner functions (color) versus
drifton trajectories (dashed contours). (c) Numerical and analytical growth rates. (d) Dimits shift in the limit of
mTHE: simulation results (green circles and red crosses) versus analytic results (with py = 1 and % = 0.05).
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Overview of the main results [5, 6]
• We propose a very basic yet quantitative model of the TI and the Dimits shift.
• Models used: the modified Hasegawa–Wakatani equation (mHWE) [7], the modified Terry–
Horton equation (mTHE) [8], and the ion-temperature-gradient (ITG) model [2].

• The TI can be described as quantum harmonic oscillators with complex frequencies.
• The TI threshold is shifted compared to the homogeneous turbulence. This shift corresponds to
the Dimits shift in the mTHE.

Motivation: localized TI modes in electrostatic ITG turbulence
• We also observed similar localized ITG modes in GK simulations of a three-dimensional periodic
box with zero magnetic shear.

• Box lengths: Lx/ρi = 10π, Ly/ρi = 2π, and Lz/a = 20π, where ρi = vi/Ωi, vi is the ion thermal
velocity, Ωi is the gyrofrequency, a is a reference length. Ions: LT/a = 0.5, Ln/a = 2.5, and
νii = 0.05vi/a. Electrons: Te = Ti, adiabatic response except to the zonal mode, as usual.

Figure 3: Gyrokinetic ITG simulation using the code GS2 [9]. (a) Linear stage, when the ITG mode grows
exponentially. (b) Nonlinear stage, when the ZF is strong and the ITG modes are localized.

The TI threshold corresponds to the Dimits shift in the large-α limit
• In the large-α limit, electrons respond adiabatically (N ≈ 0). The mHWE reduces to the mTHE:

(∂t+ ẑ×∇ϕ ·∇)w = κ∂yϕ− D̂w, w̃ = (∇2− 1 + iδ̂)ϕ̃, 〈w〉 = ∇2〈ϕ〉 δp
.
= κp2

y/[α(1 +p2
y)]. (8)

• The growth rate can be found explicitly in this limit:

γTI = Im

[
py(κ + C)

1 + p2
y − iδp

(
1−

√
C

2(κ + C)

)]
−D0 = γPI + ∆γ(C). (9)

• The instability threshold is shifted compared with the primary-instability threshold:

∆DS = κc − κlin, κc =
D0

py

(1 + p2
y)2 + δ2

p

δp − (1 + p2
y)
√
%/2

, (10)

where κlin
.
= κc|%=0 is the linear threshold of the primary instability and % .

= C/κ ≈ const.
• The quantity ∆DS is the Dimits shift. At κ > κc the ZF is too weak to suppress the TI.

The same approach can be used to study the tertiary instability of ITG turbulence
• Two-dimensional gyrofluid model used in Ref. [2]:

∂tn + ẑ ×∇φ · ∇n + ẑ ×∇(τ∇2φ) · ∇T/2 = 0, ∂tT + ẑ ×∇φ · ∇T = 0, (11)

where τ = Ti/Te, φ is the gyroaveraged electrostatic potential, T is the guiding-center perpen-
dicular temperature, and n .

= (1− τ∇2)(φ− 〈φ〉)−∇2(φ + τT/2) is the guiding-center density.
• Zonal state and perturbations:

φ = φ0(x) + φ̃(x)ei(pyy−ωt), T = T0(x) + T̃ (x)ei(pyy−ωt), n0 = −φ′′0 − τT
′′
0 /2. (12)

Then, ñ = (1 + τ p̂2 + p̂2)φ̃ + τ p̂2T̃ /2, where p̂2 .
= −∇2.

• Define U(x)
.
= φ′0, ω̄(x)

.
= ω − pyU , and assume that η .

= T ′0 is a positive constant. Then

ωñ = Ĥñ, Ĥ = pyU + py(U ′′ + τηp̂2/2− pyτηU ′′/2ω̄)Â−1, Â = 1 + (1 + τ )p̂2 − pyητω̄−1p̂2/2.

• Also assume U ≈ U0 +Cx2/2 and expand the Hamiltonian as Ĥ ≈ H+λp p̂
2
x+λx x

2. One obtains
real frequency: Reω ≈ pyU0, growth rate: Imω ∼ py

√
τηC, mode width: ∆x ∼ (τη/C)1/4.

The trapped TI mode can develop into an avalanche-like propagating structure (mHWE)
• Two types of predator–prey oscillations are observed and related to the TI.
• First type: the TI grows but is quickly suppressed by the modification of the zonal density.
• Second type: a trapped TI mode is not suppressed but develops into a propagating structure.
This happens only when the ZF amplitude u is below a certain threshold uc.

• The corresponding critical shear Sc
.
= qZuc scales linearly with γTI.

Figure 4: Left: Snapshots of a propagating structure corresponding to the red star in Fig. 1. Both the
minimum and the maximum of U are amplified by this structure. Right: The critical shear Sc.

Acknowledgment
This work was supported by the US DOE through Contract No. DE-AC02-09CH11466. This work
made use of computational support by CoSeC, the Computational Science Centre for Research
Communities, through CPP Plasma (EP/M022463/1) and HEC Plasma (EP/R029148/1).

28th IAEA Fusion Energy Conference, #770


