

Progress in theoretical understanding of the Dimits shift and the tertiary instability in drift-wave turbulence

Hongxuan Zhu¹ (hzhu@pppl.gov), Yao Zhou¹, and I. Y. Dodin^{1,2}

¹ Princeton Plasma Physics Laboratory ²Princeton University

Background	Overview of the main results [5, 6]
• The Dimits shift is the shift between the linear primary-instability threshold and the actual onset of turbu-	• We propose a very basic yet quantitative model of the TI and the Dimits shift.
 Ient transport seen in gyrokinetic simulations [1]. Zonal flows (ZFs) are believed to suppress drift-wave (DW) turbulence within the Dimits shift. Such ZFs 	 Models used: the modified Hasegawa–Wakatani equation (mHWE) [7], the modified Terry– Horton equation (mTHE) [8], and the ion-temperature-gradient (ITG) model [2].
must be stable to the tertiary instability (TI) [2].	• The TI can be described as quantum harmonic oscillators with complex frequencies.
• The TI mode in electrostatic DW turbulence tend localize near the extrema of the ZF velocity $U(x)$, as seen in many simulations using different models [2, 3, 4].	 The TI threshold is shifted compared to the homogeneous turbulence. This shift corresponds to the Dimits shift in the mTHE.
Motivation: localized TI modes in the mHWE (resistive electrostatic DW turbulence)	Motivation: localized TI modes in electrostatic ITG turbulence
• The mHWE describes 2D DW turbulence immersed in a uniform magnetic field along z :	 We also observed similar localized ITG modes in GK simulations of a three-dimensional periodic box with zero magnetic shear.
$(\partial_t + \hat{\boldsymbol{z}} \times \nabla \varphi \cdot \nabla) w = \kappa \partial_y \varphi - \hat{D} w, (\partial_t + \hat{\boldsymbol{z}} \times \nabla \varphi \cdot \nabla) n = \alpha (\tilde{\varphi} - \tilde{n}) - \kappa \partial_y \varphi - \hat{D} n. $ (1)	• Box lengths: $L_x/\rho_i = 10\pi$, $L_y/\rho_i = 2\pi$, and $L_z/a = 20\pi$, where $\rho_i = v_i/\Omega_i$, v_i is the ion thermal
Here, $\nabla = (\partial_x, \partial_y)$, φ is the electrostatic potential fluctuation, n is the density fluctuation, $w \doteq \nabla^2 \varphi - n$, κ models density gradient, α is the "adiabaticity parameter".	velocity, Ω_i is the gyrofrequency, a is a reference length. lons: $L_T/a = 0.5$, $L_n/a = 2.5$, and $\nu_{ii} = 0.05 v_i/a$. Electrons: $T_e = T_i$, adiabatic response except to the zonal mode, as usual.
• Denote $\langle \dots \rangle$ as the zonal average (average in y). The zonal average of Eqs. (1) are	6 - 0.3 - U(x) = 2
$\partial_t U = -\partial_x \langle \tilde{v}_x \tilde{v}_y \rangle - \hat{D}U, \partial_t N = -\partial_x \langle \tilde{v}_x \tilde{n} \rangle - \hat{D}N,$ (2)	4

(5)

(6)

(7)

where $U(x,t) \doteq \partial_x \langle \varphi \rangle$, $N(x,t) \doteq \langle n \rangle$, and $(\tilde{v}_x, \tilde{v}_y) = \hat{\boldsymbol{z}} \times \nabla \tilde{\varphi}$.

Figure 1: MHWE simulations with $\alpha = 5$, $\kappa = 12$, and $\hat{D} = 0.1\nabla^4$. (a) A snapshot showing \tilde{w} (color), U (solid line), and $\kappa_{\text{eff}} \doteq \kappa - \partial_x N$ (dashed line). (b) Evolution of DW and ZF energy, showing predator-prey oscillations.

Theory: tertiaty instability in the modified Hasegawa–Wakatani equations

• Assume a zonal state $U(x) = u \cos q_Z x$ and N(x) = 0, and consider a perturbation $\tilde{w} = \operatorname{Re}[\psi(x)e^{i(p_y y - \omega t)}]$ on top. The linearized mHWE (1) leads to

$$\omega \psi = \hat{H}\psi, \quad \hat{H} = p_y [U + (\kappa + U'')\hat{p}^{-2}] - i\hat{D}, \quad \hat{p}^2 \doteq \hat{p}_x^2 + p_y^2 + \frac{i\alpha + p_y\kappa}{i\alpha + i\hat{D} + \omega - p_yU}, \quad \hat{p}_x \doteq -i\frac{d}{dx}.$$
 (3)

• Eigenmodes are found numerically, and we calculate the corresponding Wigner function $W(x, p_x) \doteq W(x, p_x)$ $\int ds e^{-ip_x s} \psi(x+s/2) \psi(x-s/2)$. It is found that W are localized at

> $x = x_n \doteq n\pi/q_Z, \quad p_x = 0, \quad n = 0, \pm 1, \pm 2, \dots$ (4)

They correspond to the extrema of U. Even n: trapped mode, odd n: runaway mode. [10, 11].

Figure 3: Gyrokinetic ITG simulation using the code GS2 [9]. (a) Linear stage, when the ITG mode grows exponentially. (b) Nonlinear stage, when the ZF is strong and the ITG modes are localized.

The TI threshold corresponds to the Dimits shift in the large- α limit

• In the large- α limit, electrons respond adiabatically ($N \approx 0$). The mHWE reduces to the mTHE:

 $(\partial_t + \hat{\boldsymbol{z}} \times \nabla \varphi \cdot \nabla) w = \kappa \partial_y \varphi - \hat{D} w, \quad \tilde{w} = (\nabla^2 - 1 + \mathrm{i}\hat{\delta})\tilde{\varphi}, \quad \langle w \rangle = \nabla^2 \langle \varphi \rangle \quad \delta_{\boldsymbol{p}} \doteq \kappa p_y^2 / [\alpha (1 + p_y^2)].$ (8)

• The growth rate can be found explicitly in this limit:

$$\gamma_{\rm TI} = {\rm Im} \left[\frac{p_y(\kappa + \mathcal{C})}{1 + p_y^2 - i\delta_p} \left(1 - \sqrt{\frac{\mathcal{C}}{2(\kappa + \mathcal{C})}} \right) \right] - D_0 = \gamma_{\rm PI} + \Delta \gamma(\mathcal{C}).$$
(9)

• The instability threshold is shifted compared with the primary-instability threshold:

$$\Delta_{\rm DS} = \kappa_{\rm c} - \kappa_{\rm lin}, \quad \kappa_{\rm c} = \frac{D_0}{p_y} \frac{(1 + p_y^2)^2 + \delta_p^2}{\delta_p - (1 + p_y^2)\sqrt{\varrho/2}},$$
(10)

where $\kappa_{\text{lin}} \doteq \kappa_{\text{c}}|_{\rho=0}$ is the linear threshold of the primary instability and $\rho \doteq C/\kappa \approx \text{const.}$

• Approximate U as $U \approx U_0 + Cx^2/2$, and Weyl-expand \hat{H} as $\hat{H} \approx \mathcal{H} + \lambda_p \hat{p}_x^2 + \lambda_x x^2$, where the coefficients are given in Ref. [5]. This leads to an harmonic-oscillator equation:

$$-\lambda_p \psi'' + \lambda_x x^2 \psi = (\omega - \mathcal{H})\psi.$$

• Eigenmodes are given by Hermite polynomials H_m , where m = 0, 1, ...:

$$\psi_m = e^{-\frac{x^2}{2\lambda}} H_m(x/\sqrt{\lambda}), \quad \omega_m = \mathcal{H} + (2m+1)\lambda_x\lambda.$$

• The two modes with m = 0 ($C \ge 0$) are most unstable. The growth rates are:

 $\gamma_{\mathrm{TI}} \doteq \mathrm{Im}\,\omega_0 = \gamma_{\mathrm{PI}} + \Delta\gamma(\mathcal{C}), \quad \Delta\gamma = \gamma_{\mathrm{PI}}\,\mathcal{C}/\kappa + \mathrm{Im}(\lambda_x\lambda), \quad \gamma_{\mathrm{PI}} = p_y\kappa/\bar{p}_0^2 - \mathrm{i}D_0.$

At C = 0, γ_{TI} reduces to γ_{PI} . Therefore, the TI is a primary instability modified by the ZF.

• The quantity Δ_{DS} is the Dimits shift. At $\kappa > \kappa_c$ the ZF is too weak to suppress the TI.

The same approach can be used to study the tertiary instability of ITG turbulence • Two-dimensional gyrofluid model used in Ref. [2]:

> $\partial_t n + \hat{\boldsymbol{z}} \times \nabla \phi \cdot \nabla n + \hat{\boldsymbol{z}} \times \nabla (\tau \nabla^2 \phi) \cdot \nabla T/2 = 0, \quad \partial_t T + \hat{\boldsymbol{z}} \times \nabla \phi \cdot \nabla T = 0,$ (11)

where $\tau = T_{\rm i}/T_{\rm e}$, ϕ is the gyroaveraged electrostatic potential, T is the guiding-center perpendicular temperature, and $n \doteq (1 - \tau \nabla^2)(\phi - \langle \phi \rangle) - \nabla^2(\phi + \tau T/2)$ is the guiding-center density. • Zonal state and perturbations:

 $\phi = \phi_0(x) + \tilde{\phi}(x) e^{i(p_y y - \omega t)}, \quad T = T_0(x) + \tilde{T}(x) e^{i(p_y y - \omega t)}, \quad n_0 = -\phi_0'' - \tau T_0''/2.$ (12)Then, $\tilde{n} = (1 + \tau \hat{p}^2 + \hat{p}^2)\tilde{\phi} + \tau \hat{p}^2\tilde{T}/2$, where $\hat{p}^2 \doteq -\nabla^2$. • Define $U(x) \doteq \phi'_0$, $\bar{\omega}(x) \doteq \omega - p_y U$, and assume that $\eta \doteq T'_0$ is a positive constant. Then

 $\omega \tilde{n} = \hat{H}\tilde{n}, \quad \hat{H} = p_y U + p_y (U'' + \tau \eta \hat{p}^2 / 2 - p_y \tau \eta U'' / 2\bar{\omega}) \hat{A}^{-1}, \quad \hat{A} = 1 + (1 + \tau) \hat{p}^2 - p_y \eta \tau \bar{\omega}^{-1} \hat{p}^2 / 2.$

• Also assume $U \approx U_0 + Cx^2/2$ and expand the Hamiltonian as $\hat{H} \approx \mathcal{H} + \lambda_p \hat{p}_x^2 + \lambda_x x^2$. One obtains real frequency: Re $\omega \approx p_y U_0$, growth rate: Im $\omega \sim p_y \sqrt{\tau \eta C}$, mode width: $\Delta x \sim (\tau \eta / C)^{1/4}$.

The trapped TI mode can develop into an avalanche-like propagating structure (mHWE)

- Two types of predator-prey oscillations are observed and related to the TI.
- First type: the TI grows but is quickly suppressed by the modification of the zonal density.
- Second type: a trapped TI mode is not suppressed but develops into a propagating structure. This happens only when the ZF amplitude u is below a certain threshold u_c .

• The corresponding critical shear $S_c \doteq q_Z u_c$ scales linearly with γ_{TL} .

0.52.510 15

Figure 2: (a) Runaway and trapped mode structures: numerical (color) versus analytical (dashed contours) at $\alpha = 5$, $\kappa = 12, q_Z = 0.3, u = 10$, and $p_y = 1$. (b) Same mode structures in phase space: Wigner functions (color) versus drifton trajectories (dashed contours). (c) Numerical and analytical growth rates. (d) Dimits shift in the limit of mTHE: simulation results (green circles and red crosses) versus analytic results (with $p_y = 1$ and $\rho = 0.05$).

References

- [1] A. M. Dimits et al. Phys. Plasmas 7, 969 (2000).
- [2] B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys. Rev. Lett. 85, 5336 (2000).
- [3] S. Kobayashi and B. N. Rogers, Phys. Plasmas 19, 012315 (2012).
- [4] C.-B. Kim, B. Min, and C.-Y. An, Plasma Phys. Control. Fusion 61 035002 (2019).
- [5] H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Rev. Lett. **124**, 055002 (2020).
- [6] H. Zhu, Y. Zhou, and I. Y. Dodin, J. Plasma Phys. 86, 905860405 (2020).
- [7] R. Numata, R. Ball, and R. L. Dewar, Phys. Plasmas 14, 102312 (2007).
- [8] D. A. St-Onge, J. Plasma Phys. 83, 905830504 (2017).

28th IAEA Fusion Energy Conference, #770

- [9] M. Barnes *el al.*, GS2 v8.0.2, https://doi.org/10.5281/zenodo.2645150.
- [10] H. Zhu, Y. Zhou, D. E. Ruiz, and I. Y. Dodin, Phys. Rev. E 97, 053210 (2018); H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Plasmas 25, 072121 (2018); Phys. Plasmas 25, 082121 (2018).
- [11] D. E. Ruiz, J. B. Parker, E. L. Shi, and I. Y. Dodin, Phys. Plasmas 23, 122304 (2016).

-20 -20 0 20 -20 20-20 0 200 200 -30 (b)(a) (\mathbf{C}) 40 --20 40 lpha -10 $S_{
m c}$ 20-40 1() -10 -10 -10 -10 10 0 10 0 10 10 0 $12 \ 16 \ 20 \ 24 \ 28$ 8

Figure 4: Left: Snapshots of a propagating structure corresponding to the red star in Fig. 1. Both the minimum and the maximum of U are amplified by this structure. Right: The critical shear S_c .

Acknowledgment

This work was supported by the US DOE through Contract No. DE-AC02-09CH11466. This work made use of computational support by CoSeC, the Computational Science Centre for Research Communities, through CPP Plasma (EP/M022463/1) and HEC Plasma (EP/R029148/1).