Progress in theoretical understanding of the Dimits shift
and the tertiary instability in drift-wave turbulence
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Background | Overview of the main results [5, 6] - e
» The Dimits shift is the shift between the linear primary-instability threshold and the actual onset of turbu- * We propose a very basic yet quantitative model of the Tl and the Dimits shift.
lent transport seen in gyrokinetic simulations [1]. * Models used: the modified Hasegawa—Wakatani equation (mHWE) [7], the modified Terry—
» Zonal flows (ZFs) are believed to suppress drift-wave (DW) turbulence within the Dimits shift. Such ZFs Horton equation (mTHE) [8], and the ion-temperature-gradient (ITG) model [2].
must be stable to the tertiary instability (T1) [2].  The Tl can be described as quantum harmonic oscillators with complex frequencies.
* The Tl mode in electrostatic DW turbulence tend localize near the extrema of the ZF velocity U(z), as » The Tl threshold is shifted compared to the homogeneous turbulence. This shift corresponds to
seen in many simulations using different models [2, 3, 4]. the Dimits shift in the mTHE.
Motivation: localized Tl modes in the mHWE (resistive electrostatic DW turbulence) @ Motivation: localized Tl modes in electrostatic ITG turbulence B
» The mHWE describes 2D DW turbulence immersed in a uniform magnetic field along z:  We also observed similar localized ITG modes in GK simulations of a three-dimensional periodic
) ) box with zero magnetic shear.
(Or+ 2 x V- V)w=rOyp — Dw, (O+2xVp-V)n=a(p—n)—kdyp— Dn. (1) - Box lengths: L,/p; = 107, Ly/p; = 2, and L./a = 20w, where p; = v;/S;, v; is the ion thermal

velocity, (; is the gyrofrequency, a is a reference length. lons: Lp/a = 0.5, L,/a = 2.5, and

Here, V = (0:, 0y), ¢ is the electrostatic potential fluctuation, n is the density fluctuation, w = V<o —n, & vi = 0.050;/a. Electrons: T. — T, adiabatic response except to the zonal mode, as usual.

models density gradient, « is the “adiabaticity parameter”.

* Denote (...) as the zonal average (average in y). The zonal average of Egs. (1) are 6 . — f -9
OtU = — 0y (0y0y) — DU, N = —9,(tzn) — DN, (2) r

where U(z,t) = 0:(p), N(z,t) = (n), and (v, 0y) = 2 x V.
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0 200 400 600 800 1000 Figure 3: Gyrokinetic ITG simulation using the code GS2 [9]. (a) Linear stage, when the ITG mode grows
T t exponentially. (b) Nonlinear stage, when the ZF 1s strong and the ITG modes are localized.

Figure 1: MHWE simulations with o« = 5, kK = 12, and D = 0.1V, (a) A snapshot showing w (color), U (sold The Tl threshold corresponds to the Dimits shift in the large-a limit _
line), and x.g = k — 0N (dashed line). (b) Evolution of DW and ZF energy, showing predator—prey oscillations.

Theory: tertiaty instability in the modified Hasegawa-Wakatani equations
« Assume a zonal state U(z) = ucosgzx and N(z) = 0, and consider a perturbation w = Re[w(x)ei@yy_“t)]

* In the large-« limit, electrons respond adiabatically (N = 0). The mHWE reduces to the mTHE:

(Or+2x Vo Vw=rdyp—Dw, w=(V>=1+10)p, (w)=V(p) 6&p=cp;/[a(l+p;). (8)

. - A s B 100+ pyK .. .d - py(k+C) C _
wip = Hp, H=py[U+ (k+U")p | —1iD, p*=ps+p;+ : . pe=—i— (3 — Y ] — — Dy = A(C).
ylU + o] D rw—pu T @ = s, 1 C) 0 = vp1 + Av(C) (9)
* Eigenmodes are found numerically, and we calculate the corresponding Wigner function W (z,p;) = - The instability threshold is shifted compared with the primary-instability threshold:

[ dse™PSop(z 4 5/2)(z — s/2). Itis found that W are localized at
Dy (1+ pz)2 — 612,

Py Op — (L+p2)V/0/2

r=xp=n7/qz, ps:=0, n=0,+1,+2 .... (4) Aps = Ke — Klin, ke ; (10)

They correspond to the extrema of U. Even n: trapped mode, odd n: runaway mode. [10, 11].

- Approximate U as U ~ U + C2?/2, and Weyl-expand H as H ~ H + )\, p> + Az 2°, where the coefficients
are given in Ref. [5]. This leads to an harmonic-oscillator equation:

where ry;;, = kel ,—0 is the linear threshold of the primary instability and ¢ = C/x ~ const.
* The quantity Apg is the Dimits shift. At k > . the ZF is too weak to suppress the TI.

The same approach can be used to study the tertiary instability of ITG turbulence =~

"+ A 2P = (w — H)ep. (5) _ _ . _
 Two-dimensional gyrofluid model used in Ref. [2]:

* Eigenmodes are given by Hermite polynomials H;,, where m =0, 1, ... ) 9
om+zxVo-Vn+zxV(1Vep) - VT'/2=0, KT+ 2zxVe¢-VT =0, (11)

72
b = AHpy(z/VA),  wm=H+ (2m+ 1A (6) where T = 1}/T;, ¢ is the gyroaveraged electrostatic potential, 7" is the guiding-center perpen-

| = (1 -7V (¢ — (9)) — V* T/2) is the guiding- ity.
 The two modes with m = 0 (C = 0) are most unstable. The growth rates are: dicular temperature, and n (L =7V)(¢ = () — V(¢ +7T/2) Is the guiding-center density
« Zonal state and perturbations:

yr1 = Imwy = ypp + AY(C), Ay =p1C/r +1m(A\eX),  Ypr = pyr/pg — iDy. (7) S N

“ / A I 6 = do(x) + D) PV T = Ty() + T(a)e! PV ng = —gff — 717 /2. (12)

At C = 0, y17 reduces to yp;. Therefore, the Tl is a primary instability modified by the ZF.
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Then, i = (1 + 7p% + p2)é + 7p°T /2, where p? = —V2.
(c) * Define U(x) = ¢{, w(z) = w — py,U, and assume that n = T}) is a positive constant. Then

AN

wn = Hn, H = pyU + py(U" + 777}32/2 — pyTnU"/QcD)fl_l, A=1+1+7)p°— pynT@_lﬁQ/Q.
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%x « Also assume U ~ Uy +Cx?/2 and expand the Hamiltonian as H ~ H + A, p2 + A, 2°. One obtains
real frequency: Rew ~ p,Uj, growth rate: Imw ~ p,+/7nC, mode width: Az ~ (7 /C)Y/4,
0 The trapped Tl mode can develop into an avalanche-like propagating structure (mMHWE)
o Dimits  Two types of predator—prey oscillations are observed and related to the TI.
x turbulent * First type: the Tl grows but is quickly suppressed by the modification of the zonal density.
— Klin « Second type: a trapped Tl mode is not suppressed but develops into a propagating structure.
-~ Klin + Aps This happens only when the ZF amplitude w« is below a certain threshold ..
§__ 22;;,%  The corresponding critical shear S. = gyu. scales linearly with ~r.
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Figure 2: (a) Runaway and trapped mode structures: numerical (color) versus analytical (dashed contours) at o = 5,

k=12, q7; = 0.3, u = 10, and p; = 1. (b) Same mode structures in phase space: Wigner functions (color) versus 20
drifton trajectories (dashed contours). (c¢) Numerical and analytical growth rates. (d) Dimits shift in the limit of 407
mTHE: simulation results (green circles and red crosses) versus analytic results (with p, = 1 and ¢ = 0.09). 8 -10] oS
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