Progress in theoretical understanding of the Dimits shift and the tertiary instability of drift waves

Hongxuan Zhu Coworkers: Yao Zhou and I. Y. Dodin

Princeton Plasma Physics Lab and Princeton University

28th IAEA Fusion Energy Conference

Introduction

Motivation

2D drift-wave models The modified Terry–Horton equation The modified Hasegawa–Wakatani equation

Theory of tertiary instability

Tertiary instability as an eigenmode problem Properties of the tertiary instability

Analytic understanding of the Dimits shift

Drift waves are low-frequency waves in magnetized plasmas

They can be excited by as simple as a density gradient and a phase difference between N and Φ .

Figure 1: $B = B\hat{z}$: magnetic field, $N_0(x)$: equilibrium density, x: radial direction, y: poloidal direction, Φ : electrostatic potential perturbation, N: density perturbation, Γ : particle flux from $E \times B$ drift.

Drift waves can also be excited by temperature gradient $(N \to T)$. A famous example being ion-temperature-gradient (ITG) mode.

Zonal flows are axisymmetric but radially band-like shear flows

They can greatly reduce transport level due to the special electron response.¹

Figure 2: Zonal flows in tokamaks, from GYRO simulations by Jeff Candy and Ron Waltz. Movie from w3.pppl.gov/~hammett/viz/viz.html.

¹G. Hammett et al. Plasma Phys. Control. Fusion **35**, 973 (1993).

Zonal flows can even completely suppress drift waves, leading to the Dimits shift

The Dimits shift is a shift between the threshold of linear instabilities (without zonal flows) and the actual turbulent onset (with zonal flows).

Figure 3: Left: reduced ion heat flux due to zonal flows [Lin *et al.*, Science (1998)]. Right: ITG-driven turbulent transport. The threshold is shifted due to zonal flows. [Dimits *et al.* Phys. Plasmas (2000).]

Conventional theory cannot explain the Dimits shift

The shear decorrelation theory¹ assumes homogeneous drift-wave turbulence. However, in the "Dimits regime", zonal flows dominate and drift waves are inhomogeneous.

Figure 4: GS2 simulations of entropy modes in Z pinches. Left: total electrostatic potential. Right: nonzonal part of the potential. [S. Kobayashi and R. Rogers, Phys. Plasmas **19**, 012315 (2012).]

¹H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids. B **2**, 1 (1990).

The "tertiary instability" was proposed to explain the Dimits shift

Figure 5: The primary instability (drift-wave generation), the secondary instability (zonal-flow generation), and the tertiary instability. From simulations of the modified Terry–Horton model (introduced below).

The Dimits regime ends when zonal flows are unstable to the "tertiary instability".

• This is first demonstrated by gyrokinetic toroidal ITG simulations.¹

However, understanding of the tertiary instability remains elusive.

- Several papers calculate the tertiary instability by making truncation in Fourier space.
- Many have confused the tertiary instability with the Kelvin–Helmholtz instability.
- Need to study the tertiary instability and the Dimits shift using simple models.

¹B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys. Rev. Lett. 85, 5336 (2000).

Introduction

Motivation

2D drift-wave models The modified Terry–Horton equation The modified Hasegawa–Wakatani equation

Theory of tertiary instability

Tertiary instability as an eigenmode problem Properties of the tertiary instability

Analytic understanding of the Dimits shift

Drift-wave dynamics in a 2D slab

• Assume $T_i = 0, T_e \neq 0$. Define dimensionless quantities

$$n_{\rm e} \doteq \frac{a}{\rho_{\rm s}} \frac{N_{\rm e}}{N_0}, \quad \varphi \doteq \frac{a}{\rho_{\rm s}} \frac{e\Phi}{T_e}, \quad (x,y) \to \frac{(x,y)}{\rho_{\rm s}}, \quad t \to \frac{c_{\rm s}t}{a},$$

where $c_{\rm s} = \sqrt{T_{\rm e}/m_{\rm i}}$, $\rho_{\rm s} \doteq c_{\rm s}/\Omega_{\rm i}$, and *a* is a reference length.

- Ion guiding-center continuity equation: $\partial_t n_i + \boldsymbol{v} \cdot \nabla(N_0 + n_i) = 0$, with $\boldsymbol{v} \doteq \hat{\boldsymbol{z}} \times \nabla \varphi$.
- Quasineutrality constraint for cold ions: $n_{\rm i} n_{\rm e} = -\nabla^2 \varphi$.
- Need an equation for the electron dynamics.

The modified Terry–Horton equation (MTHE, one-field model)

• The Terry–Horton model¹ makes a simple assumption for the electron density:

$$n_{\rm e} = (1 - \mathrm{i}\hat{\delta})\varphi.$$

Then, the ion continuity equation and the quasineutrality condition give

$$\partial_t w + \boldsymbol{v} \cdot \nabla w - \kappa \partial_y \varphi + \hat{D}w = 0, \quad w \doteq (\nabla^2 - 1 + \mathrm{i}\hat{\delta})\varphi.$$

Here $\kappa \doteq a/L_n$, $L_n \doteq -(\partial_x \ln N_0)^{-1}$, and \hat{D} is friction/viscosity.

• St-Onge proposed the MTHE² with special electron response to zonal flows:³

$$n_{\rm e} = (1 - {\rm i}\hat{\delta})\varphi \quad \rightarrow \quad n_{\rm e} = (1 - {\rm i}\hat{\delta})\tilde{\varphi},$$

where $\tilde{\varphi} \doteq \varphi - \langle \varphi \rangle$ and $\langle \varphi \rangle$ is the zonal average (average over y for the 2D model).

• The MTHE exhibits finite Dimits shift.^{2,4}

¹T. Terry and W. Horton, Phys. Fluids **25**, 491 (1982).

²D. A. St-Onge, J. Plasma Phys. **83**, 905830504 (2017).

³W. Dorland and G. Hammett, Phys. Fluids B 5, 812 (1993). G. Hammett et al. PPCF 35, 973 (1993).

⁴H. Zhu, Y. Zhou, and I. Y. Dodin, J. Plasma Phys. **86**, 905860405 (2020).

The modified Hasegawa–Wakatani equation (MHWE, two-field model)

• The relation $n_e = (1 - i\hat{\delta})\varphi$ is often oversimplified. Therefore, the Hasegawa–Wakatani model evolves n_e dynamically through parallel Ohm's law:¹

$$\nabla_{\parallel} \Phi + \eta J_{\parallel} = (T_{\rm e}/eN_{\rm e})\nabla_{\parallel}N_{\rm e},$$

where η is the resistivity. This leads to the HWE:

$$egin{aligned} &(\partial_t + \hat{oldsymbol{z}} imes
abla arphi \cdot
abla) w = \kappa \partial_y arphi - \hat{D}w, & w \doteq
abla^2 arphi - n, \ &(\partial_t + \hat{oldsymbol{z}} imes
abla arphi \cdot
abla) n = lpha (arphi - n) - \kappa \partial_y arphi - \hat{D}n. \end{aligned}$$

Here, $n \doteq n_e$ and $\alpha \propto \eta^{-1}$. $\alpha \to \infty$: adiabatic limit; $\alpha \to 0$: hydrodynamic limit.

• The HWE has been modified to incorporate the special electron response to zonal flows:²

$$\alpha(\varphi - n) \rightarrow \alpha(\tilde{\varphi} - \tilde{n}).$$

The MHWE also exhibits Dimits regime and transition to turbulence.^{2,3}

¹A. Hasegawa and M. Wakatani, Phys. Rev. Lett. **50**, 682 (1983).

²R. Numata, R. Ball, and R. L. Dewar, Phys. Plasmas **14**, 102312 (2007).

³A "flux-balanced" HWE is also proposed recently [A. Majda, D. Qi , and A. Cerfon, Phys. Plasmas

^{25, 102307 (2018)]} to study the Dimits shift, which will not be further discussed here.

Introduction

Motivation 2D drift-wave models The modified Terry–Horton equation The modified Hasegawa–Wakatani equation

Theory of tertiary instability Tertiary instability as an eigenmode problem Properties of the tertiary instability

Analytic understanding of the Dimits shift

In the Dimits regime, drift waves are localized where the flow shear U' vanishes

- Here, $U \doteq \langle \varphi \rangle'$ and the prime ' denotes d/dx.
- Drift waves have different structures at the bottom and the top of U.
- These indicate the properties of the tertiary instability.

Figure 6: Simulation results from the MHWE with $\alpha = 5$, $\kappa = 12$, $\hat{D} = 0.1\nabla^4$. Green curves show the zonal-flow velocity U and the effective density gradient $\kappa_{\text{eff}} \doteq \kappa - \langle n \rangle'$. Blue and red color show the drift-wave fluctuations $\tilde{w}(x, y)$.

Tertiaty instability of a zonal flow as an eigenmode problem

• Consider the MHWE (the MTHE is even simpler). An arbitrary zonal-flow profile

$$U = U(x), \quad \langle n \rangle = 0.$$

is a stationary solution (assuming small collisional damping).

• Consider a perturbation $\tilde{w} = \text{Re}[\psi(x)e^{i(p_y y - \omega t)}]$. The linearized MHWE becomes an eigenmode equation:

$$\omega \psi = \hat{H} \psi, \quad \hat{H} = p_y [U + (\kappa + U'')\hat{p}^{-2}] - i\hat{D},$$

where $\hat{p}^2 \doteq \hat{p}_x^2 + p_y^2 + (i\alpha + i\hat{D} + \omega - p_yU)^{-1}(i\alpha + p_y\kappa)$ and $\hat{p}_x \doteq -id/dx$.

- Hydrodynamic limit ($\alpha \to 0$): Continuum modes, boundary layer modes, and Kelvin–Helmholtz instability.
- Plasma ($\alpha \gtrsim 1$): potential well and discrete energy level.

Numerical eigenmodes are obtained for $U = u \cos q_x x$ with periodic boundary condition

For the two most unstable eigenmodes $\psi(x)$, calculate the Wigner function:¹

$$W(x, p_x) \doteq \int ds \, e^{-ip_x s} \psi(x + s/2) \psi^*(x - s/2).$$

W can be considered as a "distribution function" and peak at equilibria of the Hamiltonian H:

$$\partial_x H = \partial_{p_x} H = 0 \quad \Rightarrow \quad U' = p_x = 0.$$

This explains the mode localization at U' = 0. U_{max} : "trapped" mode; U_{min} : "runaway" mode.²

Figure 7: Left: two most unstable eigenmodes plotted together, arrows show zonal-flow velocity. Right: the corresponding W; dashed lines are contours of the Hamiltonian $H = p_y U + p_y (\kappa + U'') \text{Re} \bar{p}^{-2}$.

¹D. Ruiz, J. Parker, E. Shi, and I. Y. Dodin, Phys. Plasmas **23**, 122304 (2016).

²H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Plasmas **25**, 072121 (2018).

Analytic eigenmode as quantum harmonic oscillators

Due to the mode localization in x where U' = 0, we approximate U as a parabola:

$$U \approx U_0 + \mathcal{C}x^2/2, \quad \mathcal{C} \doteq U''$$

Assume that mode is localized also in p_x , we expand \hat{H} in both x and \hat{p}_x :

$$\hat{H} \approx \mathcal{H} + \lambda_p(\mathcal{C}) \, \hat{p}_x^2 + \lambda_x(\mathcal{C}) \, x^2.$$

Then, the eigenmode equation $\omega \psi = \hat{H} \psi$ becomes

$$-\lambda_p \,\psi'' + \lambda_x \, x^2 \psi = (\omega - \mathcal{H})\psi$$

Eigenmodes are given by Hermite polynomials H_m , where m = 0, 1, ...

$$\psi_m = e^{-\frac{x^2}{2\lambda}} \mathsf{H}_m(x/\sqrt{\lambda}), \quad \omega_m = \mathcal{H} + (2m+1)\lambda_x\lambda, \quad \lambda = \sqrt{\lambda_p/\lambda_x}$$

The quantities \mathcal{H} , λ_x , and λ_p have been calculated accordingly.¹

¹H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Rev. Lett. **124**, 055002 (2020).

Numerical vs analytic eigenmodes

Both the trapped mode and the runaway mode are ground states (m = 0). They correspond to $C \doteq U'' < 0$ and C > 0, respectively.

Figure 8: Left: numerical vs analytic mode structures of the MHWE at $\alpha = 5, \kappa = 12, q_x = 0.4, u = 10$. Right: numerical vs analytic growth rate $\gamma_{\text{TI}} \doteq \text{Im } \omega_0$.

The tertiary instability shares similar features across different drift-wave models

- For the simple 1-field MTHE, we can go even deeper into analytic calculations.¹
- Our theory is not restricted to the sinusoidal zonal flows. (Only the local shape of U matters.)

Figure 9: Left: numerical vs analytic tertiary-instability growth rate of the MTHE (recall that C = U''). Right: we can always approximate the local U as a parabola (from MTHE simulations).

¹H. Zhu, Y. Zhou, and I. Y. Dodin, J. Plasma Phys. **86**, 905860405 (2020).

Introduction

Motivation 2D drift-wave models The modified Terry-Horton equation The modified Hasegawa-Wakatani equation

Theory of tertiary instability

Tertiary instability as an eigenmode problem Properties of the tertiary instability

Analytic understanding of the Dimits shift

Properties of the tertiary instability

• Absent zonal flows, $\omega = \mathcal{H}$ is simply the linear drift-wave frequency. Correspondingly, the growth rates have two parts ("PI" stands for the primary instability and $\mathcal{C} \doteq U''$ is the zonal-flow "curvature"):

$$\gamma_{\mathrm{TI}} = \gamma_{\mathrm{PI}} + \Delta \gamma(\mathcal{C}), \quad \Delta \gamma(\mathcal{C} = 0) = 0.$$

Therefore, the tertiary instability is the primary instability modified by the zonal flow.

• The tertiary instability develops when the zonal flow is weak, and it is suppressed by strong zonal flows. Therefore, the tertiary instability is not the Kelvin–Helmholtz instability.^{1,2}

¹H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Rev. Lett. **124**, 055002 (2020).

²H. Zhu, Y. Zhou, and I. Y. Dodin, J. Plasma Phys. 86, 905860405 (2020).

The tertiary instability is not the Kelvin–Helmholtz instability

- The tertiary instability extracts energy from density gradient just like the primary instability. In contrast, the Kelvin–Helmholtz instability extracts energy from the flow shear.
- Due to the special electron response to zonal flows, the Kelvin–Helmholtz instability is usually suppressed.¹ (Unless U is unrealistically large.)

Figure 10: Instability of a zonal flow with $q_x = 0.4$ and varying amplitude u. The model is the MHWE with $\alpha = 5$ and $\kappa = 12$. Only the tertiary instability is relevant for numerical simulations ($u \leq 20$).

¹H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Plasmas **25**, 082121 (2018).

Introduction

Motivation 2D drift-wave models The modified Terry–Horton equation The modified Hasegawa–Wakatani equation

Theory of tertiary instability

Tertiary instability as an eigenmode problem Properties of the tertiary instability

Analytic understanding of the Dimits shift

Interpretation of the Dimits shift from the tertiary instability

The tertiary-instability growth rate provides a generic understanding of the Dimits shift. Namely, from $\gamma_{\text{TI}} = \gamma_{\text{PI}} + \Delta \gamma(\mathcal{C})$, we have

 $\begin{array}{ll} \gamma_{\mathrm{TI}} = 0 & \Rightarrow & \kappa = \kappa^{*}, \\ \gamma_{\mathrm{PI}} = 0 & \Rightarrow & \kappa = \kappa_{\mathrm{lin}}. \end{array}$

The difference $\Delta_{\rm DS} \doteq \kappa^* - \kappa_{\rm lin}$ gives the Dimits shift.

This shift is determined by the flow curvature $\mathcal{C} \doteq U''$, not by the flow shear U'.

Analytic prediction of the Dimits shift of the one-field MTHE model

For the MTHE, $\Delta_{\rm DS}$ is calculated analytically, which gives decent agreement with numerical simulations.^{1,2}

Figure 11: Analytic prediction vs numerical simulation results of the MTHE with $\delta_{\mathbf{k}} = \delta_0 p_y$ and two different \hat{D} . Also, κ_{ZF}^* is the prediction by St-Onge [J. Plasma Phys. 83, 905830504 (2017)].

¹H. Zhu, Y. Zhou, and I. Y. Dodin, J. Plasma Phys. 86, 905860405 (2020).

²H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Rev. Lett. **125**, 055002 (2020).

There are more physics related to the Dimits shift of the two-field MHWE model

- Tertiary modes can flatten the local density profile (reducing $\kappa_{\text{eff}} \doteq \kappa \langle n \rangle'$), which in turn suppresses the tertiary instability. (Predator-prev oscillations.)
- Therefore, the Dimits shift cannot be predicted from analytic formulation assuming $\langle n \rangle = 0$.

Figure 12: Predator-prey oscillations between $E_{\rm DW}$ and $E_N \doteq \int \langle n \rangle^2 d\mathbf{x}/2$ (blue circles).

The tertiary instabilities seed turbulent bursts in the MHWE

- Tertiary modes can generate nonlinear propagating structures, triggering turbulent bursts.^{1,2,3} Similar structures are seen in a 2D fluid ITG model.⁴
- We expect that the transition from Dimits regime at small κ to turbulent regime at large κ is due to increasingly frequent turbulent bursts.

Figure 13: Left: a tertiary mode grows to finite amplitude and generates a turbulent burst.

- ¹H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Rev. Lett. **125**, 055002 (2020).
- ²Q. Di, A. Majda, and A. Cerfon, Phys. Plasmas **27**, 102304 (2020).
- ³Y. Zhang, S. Krasheninnikov, Plasma Phys. Control. Fusion **62**, 115018 (2020).
- ⁴P. Ivanov, A. Schekochihin, W. Dorland, A. Field, and F. Parra, J. Plasma Phys. 86, 855860502 (2020).

Summary

We studied the tertiary instabilities in detail from simple drift-wave models.^{1,2}

- Tertiary modes are localized at where U' = 0, as visualized using the Wigner function.
- A key finding is that $\gamma_{\text{TI}} = \gamma_{\text{PI}} + \Delta \gamma(\mathcal{C})$, where $\mathcal{C} = U''$ is the local flow curvature.
- Also, the tertiary instability is not the Kelvin–Helmholtz instability.
- These features are model-independent. In fact, we also studied the original gyrofluid ITG model by Rogers *et al.*³ (See next slide if interested, slides available for download.)

The result $\gamma_{\rm TI} = \gamma_{\rm PI} + \Delta \gamma(\mathcal{C})$ provides a generic understanding of the Dimits shift.

- We obtained an analytic prediction of $\Delta_{\rm DS}$ within the one-field MTHE model.
- Things are more complicated for the two-filed MHWE model. Nevertheless, transition to turbulent regime is still associated with tertiary instabilities and the nonlinear propagating structures. (See our paper for more discussions.)

Thank you for your attention!

¹H. Zhu, Y. Zhou, and I. Y. Dodin, J. Plasma Phys. **86**, 905860405 (2020).

²H. Zhu, Y. Zhou, and I. Dodin, Phys. Rev. Lett. **124**, 055002 (2020).

³B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys. Rev. Lett. **85**, 5336 (2000).

Application to the original gyrofluid ITG model by Rogers et al.

• The tertiary instability was first discussed from a simplified ITG model:¹

$$\partial_t n + \hat{\boldsymbol{z}} \times \nabla \phi \cdot \nabla n + \hat{\boldsymbol{z}} \times \nabla (\tau \nabla^2 \phi) \cdot \nabla T / 2 = 0, \quad \partial_t T + \hat{\boldsymbol{z}} \times \nabla \phi \cdot \nabla T = 0.$$

Our analytic method is also applicable to this model, leading to $\gamma_{\text{TI}} \sim p_y \sqrt{\tau T' U''}$,² consistent with Rogers' original results and a more recent calculation.³

• Gyrokinetic simulations show that C = U'' is stabilizing while the $\eta = T'$ is destabilizing. This supports the conclusion that the tertiary instability is *not* the Kelvin–Helmholtz instability.

Figure 14: Gyrokinetic GS2 simulation results (slab geometry) with $q_x = 0.2$ and varying u and η .

³P. Ivanov, A. Schekochihin, W. Dorland, A. Field, and F. Parra, J. Plasma Phys. 86, 855860502 (2020).

¹B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys. Rev. Lett. **85**, 5336 (2000).

²H. Zhu, Y. Zhou, and I. Y. Dodin, Phys. Rev. Lett. **124**, 055002 (2020). Supplemental material.