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Control-Oriented Models Needed in Nuclear Fusion

@ Tokamaks must operate stably for competitive energy generation
— Need to be carefully controlled for performance while avoiding instabilities

@ Many control schemes require models of plasma response to actuation

— Many physics-oriented models are too computationally intensive
— Need models with faster calculation times for control applications

@ Approaches to control-oriented modeling:
— Analytical models
x Simple enough models are not always available
— Empirical scaling laws
x May only be valid for specific scenarios
— Machine learning

x Can replicate the outputs of a function with extremely fast calculation times
x |f trained well, calculation speed does not come with a large drop in accuracy
x Only valid within the range of the training data
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MMMnet was Developed Using PCA, Grid Searches

@ Accelerated predictive modeling will enable more sophisticated model-based scenario
planning and control of tokamak plasmas

@ The neural network model of MMM enables rapid turbulent ion and electron thermal and
momentum diffusivity predictions

@ Spatially-varying profile data has been simplified using Principle Component Analysis (PCA)
to reduce the complexity of the network

@ Grid searches used to determine optimal hyperparameters
— Network architecture chosen to:

1- Maximize prediction accuracy

2- Minimize calculation time per prediction

— Training parameters chosen to maximize accuracy

@ Initial predictions made to test for accuracy and evaluation speed
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@ Multi-Layer Perceptrons (MLPs) are a simple type

of feedforward neural network with at least one
— \\

hidden layer
@ Hyperparameters determined by trial and error

Input Layer (see slides 11-13)
) : @ Final Hyperparameters:
Hidden Layers — Hidden layers: 3
: v — Nodes/hidden layer: 100
Output Layer — Batch size: 9
- J/ — Epochs: 16
— Solver: adam
\ — Loss: mean squared error
Outputs — Metrics: accuracy
Average — Hidden layer activation function: relu
Std Dev — Output layer activation function: linear

Min/Max
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@ The correlation (R?) between MMMnet and MMM, as well as the MMMnet calculation time, are
shown for different numbers of learned parameters

@ The red circled points represent the chosen architecture of 3 hidden layers with 100 nodes per
layer, or 35,500 learned parameters

0.88 0.11
®
« 0.86 ®, - ® ® ° 0.105 o
e ° 0.1 ®
0 0.84 oo® -5
p «»
0.095
2 o0.82 5
< = °®
S S 0.09 .
T 0.8 S ®
> ® 0.085 °
So.78 o 0.08 °
o 8 ¢ . ©®
o © 0.075 % ®
& 0.74 T E
So. . 0.07
<o0.72 ° 0.065
0.7 0.06
0 50000 100000 150000 0 50000 100000 150000

Number of Learned Parameters Number of Learned Parameters

Average R’ for validation data Time per prediction

NATIONAL FUSION FAGILITY S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

ssssssss

Profile Outputs Show Good Agreement Between MMM and Neural

Network Prediction

@ Prediction of TRANSP run 176052T05 from the testing dataset

@ MMMnet is capable of reconstructing complex profile shapes by using reduced number of
modes arising from Principle Component Analysis

@ Predictions shown up to ¢ = 0.8, which is the range for which the TRANSP runs used for
training reported MMM outputs
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Use of MMMnet Allows COTSIM To Predict 7, Closer to

Experimental Profile: Shot 147621

@ Choose a shot from the same experiment with the same equilibrium
@ Use the same model except for a higher value of B, to match the new shot
@ Using MMMnet gives a T, profile closer to the experimental profile
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Neural Networks Enable Faster Predictive Modeling for Control and

Real-Time Applications

@ Multi-Mode Model (MMM) is a physics-based turbulent transport model

— Verified against first principle simulations
— Extensively validated against experimental data
— Takes too long to run for control applications

@ Existing control-oriented transport models can run quickly, but may sacrifice some prediction
accuracy

@ Neural networks versions of computationally-intensive models have recently been developed,
e.g.:
— TGLF, EPED: Meneghini NF 2017, 2014
— QualLiKiz: Citrin NF 2015
— NUBEAM: Boyer NF 2019, Morosohk FED 2021

@ Can a neural network (MMMnet) reproduce the results of MMM?
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@ Inputs to the NN are the same as the inputs to MMM as a standalone

Symbol Explanation Gradient also used
Zimp Mean charge of impurities
Aimp Mean mass of impurities
R Major radius
a Minor radius
Bior Toroidal magnetic field
e Electron density X
n; lon density X
I n, Hydrogenic thermal particle density X
nputs — .
Nimp Impurity ion density X
st Fast ion density
T, Electron temperature X
T; Thermal ion temperature X
q Safety factor X
QEexs ExB shearing rate
Ve Toroidal velocity X
Vo Poloidal velocity X
Xi Turbulent ion thermal diffusivity
Outputs Xe Turbulent electron thermal diffusivity
Xé Turbulent toroidal momentum diffusivity
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Principle Component Analysis Used to Reduce Profiles to Scalar

Quantities

@ MLPs are not designed to handle spatially-varying data

@ Reduce each profile to the coefficients of basis functions

@ Keep modes that explain at least 0.1% of the variance

@ Ensures at least 99.5% of the variance is retained for each profile
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Number of Epochs Was Chosen By Grid Search

@ Choose number of epochs to maximize accuracy and minimize difference in accuracy
between training and validation data

@ Increasing difference in correlation with more epochs indicates overfitting

@ Final model uses 16 epochs
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Neural Network has Capability to Generate Accurate Predictions at

Speed Useful for Control Applications

@ In 1.35 ms (using Cython), network calculates for one time step:

— Data preprocessing and postprocessing
— Prediction of all outputs 5 times

x5 separate neural networks account for randomness in weight initialization

— Average and standard deviation of the 5 values

@ Average predictions correlate to MMM data with good accuracy:

R’ values: training data R“ values: testing data
Xi 0.961 0.883
e 0.941 0.843
Xo 0.928 0.878
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MMMnet Predicts Diffusivity Used by COTSIM to Solve Heat

Transport Equation

® COTSIM uses a modular configuration
— Allows the user to choose which model to use for each step in the simulation

— All available models need to meet speed requirements

@ Y. used in electron heat transport equation
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— Current options to calculate y. include Bohm/gyro-Bohm, Coppi-Tang anomalous models,
Chang-Hinton neoclassical model

— Add option to use MMMnet instead
— As more transport equations are added, more diffusivities will be needed
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Future Plans for Improving Neural Network

@ Include outer edge of plasma in predictions
— MMM will have H-mode pedestal capabilities soon

@ Add poloidal momentum, impurity, electron particle diffusivities as outputs

@ Improve network speed by:

— Calling network using executable
— Training separate network for each output
— Run 5 separate networks using parallel computing
— Decreasing complexity of networks
x Sacrifices some accuracy

@ Consider using convolutional neural network

— Better able to handle spatially varying data
— May require more data, more computationally intensive
— More complicated architecture means longer prediction times

@ Integrate MMMnet into DIII-D Plasma Control System
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Some Neural Network Terminology

@ Principle Component Analysis:

— Project each profile onto a set of basis functions

— Profile reduced to the coefficients of a linear combination of basis functions

— Limits the number of data points necessary to describe spatially varying data
@ Hyperparameter:

— Any parameter of the neural network that is assigned as opposed to learned
@ Grid search:

— Testing different combinations of hyperparameters by:

1- Training the network
2- Evaluating its performance

@ Epoch:

— Using each observation in the training data set once during training
— Training usually takes multiple epochs, but too many can cause overfitting

@ Overfitting:

— Neural network learns the training data better than the underlying function
— Neural network performs worse on validation and testing data
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A Dataset Was Prepared Based on TRANSP Runs Executed for

Recent DIII-D Experiments

@ Called 1000 new TRANSP runs

— Based on 83 existing between-shots TRANSP runs

— Uniformly varied Z.; from 1.5 to 5, edge neutral density from 5.0 x 10" to 1.0 x 10" cm™ using
random number generator

— Assigned fast ion diffusivity profile to be either zero, flat, or peaked with a maximum ranging from 1
to 50, 000 cm? /s

@ Training data set (80% of data) used to train neural network model

@ Validation data set (10% of data) used to determine optimal values of hyperparameters, e.g.
network architecture

@ Testing data set (10% of data) used to assess network prediction accuracy and calculation
time on data it has not trained on
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Principle Component Analysis Used to Reduce Profiles to Scalar

Quantities

@ MLPs are not designed to handle spatially-varying data

@ Reduce each profile to the coefficients of basis functions

@ Keep modes that explain at least 0.1% of the variance

@ Ensures at least 99.5% of the variance is retained for each profile
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Time Traces of Neural Network Predictions Match MMM Closely for
Shots in Testing Data Set

@ Prediction of TRANSP run 176052T05 from the testing dataset

® MMMnet is able to follow changes throughout the course of the shot
@ Shaded blue area is one standard deviation from the mean prediction
@ Uncertainty is higher when data is fluctuating more
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COTSIM Predicts Evolution of Critical Plasma States

@ Goals:

— Simulate full shots fast enough to be useful for control applications

x Offline: iterative control design, between-shots scenario planning, etc.
x Real time: state estimation, optimization-based feedback control, etc.
* Faster than real time: state forecasting, etc.

— Be able to run with prescribed actuator inputs or test a feedback controller
— Configured for control of scalars, profiles, or both
@ Current capabilities:

— Solves transport equations for poloidal stream function (v), electron temperature (T,), ion rotation
(€2)
— Uses lower complexity models for T;, n., n;
— Uses a prescribed equilibrium or a fixed-boundary analytical solver
@ Current upgrade work:

— Add transport equations for ion temperature (7;), electron/ion densities (n./n;)
— Integrate a free-boundary numerical equilibrium solver
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Use of MMMnet Allows COTSIM To Predict 7, Closer to

Experimental Profile: Shot 147634

@ Both COTSIM simulations use the same pedestal model, so they match each other exactly at
the edge

@ COTSIM using MMMnet predict a T, profile that is closer to the experimental profile in both
shape and magnitude
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Future Work Towards NN Model Integration in COTSIM

@ Further testing of MMMet . predictions

- Simulate shots and make comparison for different plasma scenarios

* Empirical models have been tuned to this particular scenario
x MMMnet is trained on data from many different plasma scenarios
x Evaluate potential benefit of using MMMnet over empirical models

@ Use MMMnet x4 prediction in solving rotation equation
- Need x4 prediction across the whole spatial profile

@ Add more neural network options to COTSIM
- NUBEAM (Morosohk FED 2021)

x Option already available in COTSIM to calculate heating, torque, and current drive from neutral beams

- TGLF (Meneghini NF 2017)

*x Need transport equations in COTSIM that can handle TGLFNN outputs of flux, including diffusive and
convective components

- GENRAY/CQL3D
* Neural network models being developed by MIT
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