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Understanding Tungsten Divertor Sourcing During DIII-D 
H-mode Discharges In Different ELM Regimes
Control-Oriented Models Needed in Nuclear Fusion

Tokamaks must operate stably for competitive energy generation
� Need to be carefully controlled for performance while avoiding instabilities

Many control schemes require models of plasma response to actuation
� Many physics-oriented models are too computationally intensive
� Need models with faster calculation times for control applications

Approaches to control-oriented modeling:
� Analytical models

⇤ Simple enough models are not always available

� Empirical scaling laws
⇤ May only be valid for specific scenarios

� Machine learning
⇤ Can replicate the outputs of a function with extremely fast calculation times
⇤ If trained well, calculation speed does not come with a large drop in accuracy
⇤ Only valid within the range of the training data
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Neural Networks Enable Faster Predictive Modeling for Control and
Real-Time Applications

Multi-Mode Model (MMM) is a physics-based turbulent transport model
� Verified against first principle simulations
� Extensively validated against experimental data
� Takes too long to run for control applications

Existing control-oriented transport models can run quickly, but may sacrifice some prediction
accuracy

Neural networks versions of computationally-intensive models have recently been developed,
e.g.:
� TGLF, EPED: Meneghini NF 2017, 2014
� QuaLiKiz: Citrin NF 2015
� NUBEAM: Boyer NF 2019, Morosohk FED 2021

Can a neural network (MMMnet) reproduce the results of MMM?
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Some Neural Network Terminology

Principle Component Analysis:
� Project each profile onto a set of basis functions
� Profile reduced to the coefficients of a linear combination of basis functions
� Limits the number of data points necessary to describe spatially varying data

Hyperparameter:
� Any parameter of the neural network that is assigned as opposed to learned

Grid search:
� Testing different combinations of hyperparameters by:

1- Training the network
2- Evaluating its performance

Epoch:
� Using each observation in the training data set once during training
� Training usually takes multiple epochs, but too many can cause overfitting

Overfitting:
� Neural network learns the training data better than the underlying function
� Neural network performs worse on validation and testing data
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MMMnet was Developed Using PCA, Grid Searches

Accelerated predictive modeling will enable more sophisticated model-based scenario
planning and control of tokamak plasmas

The neural network model of MMM enables rapid turbulent ion and electron thermal and
momentum diffusivity predictions

Spatially-varying profile data has been simplified using Principle Component Analysis (PCA)
to reduce the complexity of the network

Grid searches used to determine optimal hyperparameters
� Network architecture chosen to:

1- Maximize prediction accuracy

2- Minimize calculation time per prediction

� Training parameters chosen to maximize accuracy

Initial predictions made to test for accuracy and evaluation speed
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Inputs and Outputs for MMMnet Taken from MMM

Inputs to the NN are the same as the inputs to MMM as a standalone
Symbol Explanation Gradient also used

Inputs

Zimp Mean charge of impurities
Aimp Mean mass of impurities

R Major radius
a Minor radius

Btor Toroidal magnetic field
ne Electron density ⇥
ni Ion density ⇥
nh Hydrogenic thermal particle density ⇥

nimp Impurity ion density ⇥
nfast Fast ion density
Te Electron temperature ⇥
Ti Thermal ion temperature ⇥
q Safety factor ⇥

⌦E⇥B ExB shearing rate
v� Toroidal velocity ⇥
v✓ Poloidal velocity ⇥

Outputs

�i Turbulent ion thermal diffusivity
�e Turbulent electron thermal diffusivity
�� Turbulent toroidal momentum diffusivity
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A Dataset Was Prepared Based on TRANSP Runs Executed for
Recent DIII-D Experiments

Called 1000 new TRANSP runs

� Based on 83 existing between-shots TRANSP runs

� Uniformly varied Zeff from 1.5 to 5, edge neutral density from 5.0 ⇥ 1010 to 1.0 ⇥ 1013 cm�3 using
random number generator

� Assigned fast ion diffusivity profile to be either zero, flat, or peaked with a maximum ranging from 1
to 50, 000 cm2/s

Training data set (80% of data) used to train neural network model

Validation data set (10% of data) used to determine optimal values of hyperparameters, e.g.
network architecture

Testing data set (10% of data) used to assess network prediction accuracy and calculation
time on data it has not trained on
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Multi-Layer Perceptron Chosen as Network Structure

Input Layer

Output Layer

Hidden Layers

Outputs 
Average 
Std Dev 

Min/Max

Inputs

Five Separately 

Trained Neural 

Networks

Multi-Layer Perceptrons (MLPs) are a simple type
of feedforward neural network with at least one
hidden layer
Hyperparameters determined by trial and error
(see slides 11-13)
Final Hyperparameters:
� Hidden layers: 3
� Nodes/hidden layer: 100
� Batch size: 9
� Epochs: 16
� Solver: adam
� Loss: mean squared error
� Metrics: accuracy
� Hidden layer activation function: relu
� Output layer activation function: linear
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Principle Component Analysis Used to Reduce Profiles to Scalar
Quantities

MLPs are not designed to handle spatially-varying data
Reduce each profile to the coefficients of basis functions
Keep modes that explain at least 0.1% of the variance
Ensures at least 99.5% of the variance is retained for each profile
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Principle Component Analysis Used to Reduce Profiles to Scalar
Quantities

MLPs are not designed to handle spatially-varying data
Reduce each profile to the coefficients of basis functions
Keep modes that explain at least 0.1% of the variance
Ensures at least 99.5% of the variance is retained for each profile
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Network Architecture Was Chosen By Grid Search

The correlation (R2) between MMMnet and MMM, as well as the MMMnet calculation time, are
shown for different numbers of learned parameters

The red circled points represent the chosen architecture of 3 hidden layers with 100 nodes per
layer, or 35,500 learned parameters
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Number of Epochs Was Chosen By Grid Search

Choose number of epochs to maximize accuracy and minimize difference in accuracy
between training and validation data
Increasing difference in correlation with more epochs indicates overfitting
Final model uses 16 epochs
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Time Traces of Neural Network Predictions Match MMM Closely for
Shots in Testing Data Set

Prediction of TRANSP run 176052T05 from the testing dataset
MMMnet is able to follow changes throughout the course of the shot
Shaded blue area is one standard deviation from the mean prediction
Uncertainty is higher when data is fluctuating more

�i �e ��
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Profile Outputs Show Good Agreement Between MMM and Neural
Network Prediction

Prediction of TRANSP run 176052T05 from the testing dataset
MMMnet is capable of reconstructing complex profile shapes by using reduced number of
modes arising from Principle Component Analysis
Predictions shown up to  ̂ = 0.8, which is the range for which the TRANSP runs used for
training reported MMM outputs

�i �e ��
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Neural Network has Capability to Generate Accurate Predictions at
Speed Useful for Control Applications

In 1.35 ms (using Cython), network calculates for one time step:

� Data preprocessing and postprocessing

� Prediction of all outputs 5 times

⇤ 5 separate neural networks account for randomness in weight initialization

� Average and standard deviation of the 5 values

Average predictions correlate to MMM data with good accuracy:

R
2 values: training data R

2 values: testing data
�i 0.961 0.883
�e 0.941 0.843
�� 0.928 0.878
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COTSIM Predicts Evolution of Critical Plasma States

Goals:
� Simulate full shots fast enough to be useful for control applications

⇤ Offline: iterative control design, between-shots scenario planning, etc.
⇤ Real time: state estimation, optimization-based feedback control, etc.
⇤ Faster than real time: state forecasting, etc.

� Be able to run with prescribed actuator inputs or test a feedback controller
� Configured for control of scalars, profiles, or both

Current capabilities:
� Solves transport equations for poloidal stream function ( ), electron temperature (Te), ion rotation

(⌦)
� Uses lower complexity models for Ti, ne, ni

� Uses a prescribed equilibrium or a fixed-boundary analytical solver

Current upgrade work:
� Add transport equations for ion temperature (Ti), electron/ion densities (ne/ni)
� Integrate a free-boundary numerical equilibrium solver
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COTSIM’s Modularity Allows for User-defined Complexity
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MMMnet Predicts Diffusivity Used by COTSIM to Solve Heat
Transport Equation

COTSIM uses a modular configuration

� Allows the user to choose which model to use for each step in the simulation
� All available models need to meet speed requirements

�e used in electron heat transport equation
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� Current options to calculate �e include Bohm/gyro-Bohm, Coppi-Tang anomalous models,
Chang-Hinton neoclassical model

� Add option to use MMMnet instead
� As more transport equations are added, more diffusivities will be needed
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Use of MMMnet Allows COTSIM To Predict Te Closer to
Experimental Profile: Shot 147634

Both COTSIM simulations use the same pedestal model, so they match each other exactly at
the edge
COTSIM using MMMnet predict a Te profile that is closer to the experimental profile in both
shape and magnitude
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Use of MMMnet Allows COTSIM To Predict Te Closer to
Experimental Profile: Shot 147621

Choose a shot from the same experiment with the same equilibrium
Use the same model except for a higher value of B0 to match the new shot
Using MMMnet gives a Te profile closer to the experimental profile
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Future Plans for Improving Neural Network

Include outer edge of plasma in predictions
� MMM will have H-mode pedestal capabilities soon

Add poloidal momentum, impurity, electron particle diffusivities as outputs
Improve network speed by:
� Calling network using executable
� Training separate network for each output
� Run 5 separate networks using parallel computing
� Decreasing complexity of networks

⇤ Sacrifices some accuracy

Consider using convolutional neural network
� Better able to handle spatially varying data
� May require more data, more computationally intensive
� More complicated architecture means longer prediction times

Integrate MMMnet into DIII-D Plasma Control System
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Future Work Towards NN Model Integration in COTSIM

Further testing of MMMet �e predictions
- Simulate shots and make comparison for different plasma scenarios

⇤ Empirical models have been tuned to this particular scenario
⇤ MMMnet is trained on data from many different plasma scenarios
⇤ Evaluate potential benefit of using MMMnet over empirical models

Use MMMnet �� prediction in solving rotation equation
- Need �� prediction across the whole spatial profile

Add more neural network options to COTSIM
- NUBEAM (Morosohk FED 2021)

⇤ Option already available in COTSIM to calculate heating, torque, and current drive from neutral beams

- TGLF (Meneghini NF 2017)
⇤ Need transport equations in COTSIM that can handle TGLFNN outputs of flux, including diffusive and

convective components

- GENRAY/CQL3D
⇤ Neural network models being developed by MIT
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