Neural Network Model of the Multi-Mode Anomalous Transport Module: Real-Time Model for Simulations

Shira Morosohk, Andres Pajares, Tariq Rafiq, and Eugenio Schuster

Lehigh University, Bethlehem, Pennsylvania 18015, USA E-mail: morosohk@lehigh.edu

Control-Oriented Models Needed in Nuclear Fusion

- Tokamaks must operate stably for competitive energy generation
 - Need to be carefully controlled for performance while avoiding instabilities
- Many control schemes require models of plasma response to actuation
 - Many physics-oriented models are too computationally intensive
 - Need models with faster calculation times for control applications
- Approaches to control-oriented modeling:
- Analytical models
 - * Simple enough models are not always available
- Empirical scaling laws
 - * May only be valid for specific scenarios
- Machine learning
 - * Can replicate the outputs of a function with extremely fast calculation times
 - * If trained well, calculation speed does not come with a large drop in accuracy
- * Only valid within the range of the training data DIII-D

S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

MMMnet was Developed Using PCA, Grid Searches

- Accelerated predictive modeling will enable more sophisticated model-based scenario planning and control of tokamak plasmas
- The neural network model of MMM enables rapid turbulent ion and electron thermal and momentum diffusivity predictions
- Spatially-varying profile data has been simplified using Principle Component Analysis (PCA) to reduce the complexity of the network

Neural Networks Enable Faster Predictive Modeling for Control and **Real-Time Applications**

- Multi-Mode Model (MMM) is a physics-based turbulent transport model
 - Verified against first principle simulations
 - Extensively validated against experimental data
- Takes too long to run for control applications
- Existing control-oriented transport models can run quickly, but may sacrifice some prediction accuracy
- Neural networks versions of computationally-intensive models have recently been developed. e.g.:
 - TGLF, EPED: Meneghini NF 2017, 2014
 - QuaLiKiz: Citrin NF 2015
 - NUBEAM: Boyer NF 2019, Morosohk FED 2021
- Can a neural network (MMMnet) reproduce the results of MMM?

NATIONAL FUSION FACILITY

DIII-D

DIII-D

S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

Inputs and Outputs for MMMnet Taken from MMM

Inputs to the NN are the same as the inputs to MMM as a standalone

	Symbol	Explanation	Gradient also used
Inputs	Z_{imp}	Mean charge of impurities	
	A _{imp}	Mean mass of impurities	
	R	Major radius	
	a	Minor radius	
	B _{tor}	Toroidal magnetic field	
	n _e	Electron density	×
	n_i	Ion density	×
	n_h	Hydrogenic thermal particle density	×
	<i>n_{imp}</i>	Impurity ion density	×
	n _{fast}	Fast ion density	
	T_e	Electron temperature	×
	T_i	Thermal ion temperature	×
	q	Safety factor	×
	$\Omega_{E \times B}$	ExB shearing rate	
	v_{ϕ}	Toroidal velocity	×
	$v_{ heta}$	Poloidal velocity	×
Outputs	χ_i	Turbulent ion thermal diffusivity	
	χ_e	Turbulent electron thermal diffusivity	
	χ_{ϕ}	Turbulent toroidal momentum diffusivity	

Some Neural Network Terminology

Principle Component Analysis:

- Project each profile onto a set of basis functions
- Profile reduced to the coefficients of a linear combination of basis functions
- Limits the number of data points necessary to describe spatially varying data
- Hyperparameter:
 - Any parameter of the neural network that is assigned as opposed to learned
- Grid search:
 - Testing different combinations of hyperparameters by:
 - 1- Training the network
 - 2- Evaluating its performance
- Epoch:
 - Using each observation in the training data set once during training
 - Training usually takes multiple epochs, but too many can cause overfitting
- Overfitting:

DIII-D

- Neural network learns the training data better than the underlying function
- Neural network performs worse on validation and testing data

S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

A Dataset Was Prepared Based on TRANSP Runs Executed for Recent DIII-D Experiments

- Called 1000 new TRANSP runs
 - Based on 83 existing between-shots TRANSP runs
 - Uniformly varied Z_{eff} from 1.5 to 5, edge neutral density from 5.0×10^{10} to 1.0×10^{13} cm⁻³ using random number generator
 - Assigned fast ion diffusivity profile to be either zero, flat, or peaked with a maximum ranging from 1

Grid searches used to determine optimal hyperparameters

- Network architecture chosen to:
 - 1- Maximize prediction accuracy
 - 2- Minimize calculation time per prediction
- Training parameters chosen to maximize accuracy
- Initial predictions made to test for accuracy and evaluation speed

S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

Multi-Layer Perceptron Chosen as Network Structure

Principle Component Analysis Used to Reduce Profiles to Scalar Quantities

- MLPs are not designed to handle spatially-varying data
- Reduce each profile to the coefficients of basis functions
- Keep modes that explain at least 0.1% of the variance
- Ensures at least 99.5% of the variance is retained for each profile

Network Architecture Was Chosen By Grid Search

- The correlation (R^2) between MMMnet and MMM, as well as the MMMnet calculation time, are shown for different numbers of learned parameters
- The red circled points represent the chosen architecture of 3 hidden layers with 100 nodes per layer, or 35,500 learned parameters

Number of Epochs Was Chosen By Grid Search

- Choose number of epochs to maximize accuracy and minimize difference in accuracy between training and validation data
- Increasing difference in correlation with more epochs indicates overfitting
- Final model uses 16 epochs

to 50,000 cm²/s

- **Training** data set (80% of data) used to train neural network model
- Validation data set (10% of data) used to determine optimal values of hyperparameters, e.g. network architecture
- **Testing** data set (10% of data) used to assess network prediction accuracy and calculation time on data it has not trained on

DIII-D

S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

Principle Component Analysis Used to Reduce Profiles to Scalar Quantities

- MLPs are not designed to handle spatially-varying data
- Reduce each profile to the coefficients of basis functions
- Keep modes that explain at least 0.1% of the variance
- Ensures at least 99.5% of the variance is retained for each profile

Time Traces of Neural Network Predictions Match MMM Closely for Shots in Testing Data Set

- Prediction of TRANSP run 176052T05 from the testing dataset
- MMMnet is able to follow changes throughout the course of the shot
- Shaded blue area is one standard deviation from the mean prediction
- Uncertainty is higher when data is fluctuating more

- Prediction of TRANSP run 176052T05 from the testing dataset
- MMMnet is capable of reconstructing complex profile shapes by using reduced number of modes arising from Principle Component Analysis
- Predictions shown up to $\hat{\psi} = 0.8$, which is the range for which the TRANSP runs used for training reported MMM outputs

COTSIM's Modularity Allows for User-defined Complexity

Neural Network has Capability to Generate Accurate Predictions at Speed Useful for Control Applications

- In 1.35 ms (using Cython), network calculates for one time step:
 - Data preprocessing and postprocessing
 - Prediction of all outputs 5 times
 - * 5 separate neural networks account for randomness in weight initialization
 - Average and standard deviation of the 5 values

Average predictions correlate to MMM data with good accuracy:

	R^2 values: training data	R^2 values: testing data
χ_i	0.961	0.883
χ_e	0.941	0.843
χ_{ϕ}	0.928	0.878

NATIONAL FUSION FACILITY

S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

MMMnet Predicts Diffusivity Used by COTSIM to Solve Heat Transport Equation

- COTSIM uses a modular configuration
 - Allows the user to choose which model to use for each step in the simulation
 - All available models need to meet speed requirements
- χ_e used in electron heat transport equation

$$\frac{3}{2}\frac{\partial}{\partial t}[n_e T_e] = \frac{1}{2\hat{x}}\frac{1}{\hat{x}}\frac{\partial}{\partial \hat{x}}\left[\hat{\rho}\frac{\hat{G}\hat{H}^2}{\hat{x}}\left(\chi_e n_e\frac{\partial T_e}{\partial \hat{x}}\right)\right] + Q_e$$

COTSIM Predicts Evolution of Critical Plasma States

Goals:

- Simulate full shots fast enough to be useful for control applications

- * Offline: iterative control design, between-shots scenario planning, etc.
- * Real time: state estimation, optimization-based feedback control, etc.
- * Faster than real time: state forecasting, etc.
- Be able to run with prescribed actuator inputs or test a feedback controller
- Configured for control of scalars, profiles, or both

• Current capabilities:

- Solves transport equations for poloidal stream function (ψ), electron temperature (T_e), ion rotation
- Uses lower complexity models for T_i , n_e , n_i
- Uses a prescribed equilibrium or a fixed-boundary analytical solver

Ourrent upgrade work:

- Add transport equations for ion temperature (T_i) , electron/ion densities (n_e/n_i)
- Integrate a free-boundary numerical equilibrium solver

(1)

S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

Use of MMMnet Allows COTSIM To Predict T_e Closer to Experimental Profile: Shot 147634

- Both COTSIM simulations use the same pedestal model, so they match each other exactly at the edge
- COTSIM using MMMnet predict a T_e profile that is closer to the experimental profile in both shape and magnitude

Use of MMMnet Allows COTSIM To Predict T_e Closer to Experimental Profile: Shot 147621

• Choose a shot from the same experiment with the same equilibrium • Use the same model except for a higher value of B_0 to match the new shot • Using MMMnet gives a T_e profile closer to the experimental profile

 $2 \ Ot$ $\rho_b^2 H \rho \partial \rho \mid F \quad (O \rho) \mid$

- Current options to calculate χ_e include Bohm/gyro-Bohm, Coppi-Tang anomalous models, Chang-Hinton neoclassical model
- Add option to use MMMnet instead
- As more transport equations are added, more diffusivities will be needed

S. Morosohk (LU Plasma Control Group) / IAEA-FEC / May 10-15, 2021

Future Plans for Improving Neural Network

- Include outer edge of plasma in predictions
 - MMM will have H-mode pedestal capabilities soon
- Add poloidal momentum, impurity, electron particle diffusivities as outputs
- Improve network speed by:
 - Calling network using executable
 - Training separate network for each output
 - Run 5 separate networks using parallel computing
 - Decreasing complexity of networks
 - * Sacrifices some accuracy
- Consider using convolutional neural network
 - Better able to handle spatially varying data
 - May require more data, more computationally intensive
 - More complicated architecture means longer prediction times
- Integrate MMMnet into DIII-D Plasma Control System

Future Work Towards NN Model Integration in COTSIM

- Further testing of MMMet χ_e predictions
 - Simulate shots and make comparison for different plasma scenarios
 - * Empirical models have been tuned to this particular scenario
 - * MMMnet is trained on data from many different plasma scenarios
 - * Evaluate potential benefit of using MMMnet over empirical models
- Use MMMnet χ_{ϕ} prediction in solving rotation equation
 - Need χ_{ϕ} prediction across the whole spatial profile
- Add more neural network options to COTSIM
 - NUBEAM (Morosohk FED 2021)
 - * Option already available in COTSIM to calculate heating, torque, and current drive from neutral beams
 - TGLF (Meneghini NF 2017)
 - * Need transport equations in COTSIM that can handle TGLFNN outputs of flux, including diffusive and convective components
 - GENRAY/CQL3D

