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•Use machine learning to infer model for transport and mean zonal

dynamics in drift-wave turbulence from simulations

•Key results: particle flux contains term driven by zonal flow curvature,

which can set up staircase pattern in the profile. Zonal flow formation

described by negative viscosity + stabilizing nonlinearity and

hyperviscosity

•Methods may be useful for understanding transport in more complicated

systems (e.g. gyrokinetics)

ABSTRACT
PARTICLE FLUX
For small !", $", neural net learns model of the form Γ = ((−+,!" +

+.$"). Second, nondiffusive term depends on flow curvature, modulates 

profile in presence of zonal flow. Can be derived from quasilinear theory: 

originates from flow-induced shift in drift-wave frequency 

REYNOLDS STRESS
Neural network learns model roughly of the form (for small $) 

Π = (1(!", $") −23$ + 24$4 − 25$"" .

Zonal flows thus destabilized by negative viscosity 23, restabilized by 

nonlinearity 24, hyperviscosity 25, and 1, which → 0 for large !", $′. 

Consistent with previous analytic modeling.

1D REDUCED MODEL
Couple with intensity equation

:;( + 2( !" + $" Γ − :=Π = −>?( − >@A(B

to obtain three-field, 1D reduced model. Can solve numerically

OUTCOME

•(Radial) turbulent transport is described by turbulent fluxes Γ =

CDE CF , Π = ⟨ CDE CDH⟩, etc. Particle flux can lead to confinement losses,

Reynolds stress sets up zonal flow (important for L-H transition)

•Traditional modeling approaches, like quasilinear theory, tend to rely on

successive and often dubious approximations

•Idea of this work: use supervised machine learning (neural network) to

find mean-field closure which expresses fluxes as functions of zonally-

averaged variables

•As proof of concept, apply to Hasegawa-Wakatani system

:;F + {K, F} = M NK − CF

:;∇BK + {K, ∇BK} = M( NK − CF)

•Goal is to then obtain closed system

:; F + :EΓ = 0
:;:EB K − :EBΠ = 0

with expressions for fluxes and partnered with equation for intensity

BACKGROUND

FEATURE SELECTION
Seek a local model: fluxes at each radius, time specified by local mean fields

and gradients. Continuous symmetries → fluxes should depend only on

!" = :E F , $ = −:EB⟨K⟩ and higher-order derivatives. Need turbulence

intensity proxy as well: choose turb. PE ( = CF − ∇B NK
B
. Input

variables/features are then chosen to be !", $, $", $"", (

SIMULATIONS
Perform 32 simulations of 2D HW on 512×512 grid using BOUT++. Employ

variety of initial conditions for mean profile and zonal flow to span

parameter space. Simulations fix adiabaticity at M = 2

DEEP LEARNING
Use a deep neural network (multilayer perceptron) to learn mapping from

input variables to Γ, Π, which are computed at points in radius and time.

Serves as a proven form of nonparametric (model-free) regression.

Reflection symmetries of HW are enforced by data augmentation

METHODS

Dependence of particle flux on N’ at fixed U’ (left) and on U’ at fixed N’ (right)

•Have used machine learning as novel approach to understand turbulent

transport and structure formation in a plasma system

•Identified nondiffusive particle flux as novel route to profile layering.

Model for zonal flow generation is of Cahn-Hilliard type (negative

viscosity + stabilizing terms)

•Failed to find model for turbulence spreading. May require nonlocal

model

•This method could be used to study mean transport in gyrokinetic

system or other systems with multiple interacting channels

CONCLUSION
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Clockwise from top left: dependence of particle flux on U’ and N’; dependence 
of Reynolds stress on U (at fixed N’, U’, U’’); dependence of Reynolds stress on 
U’ and N’ (at fixed U, (); dependence of Reynolds stress on U’’ (at fixed U, U’, 
U’’)


