P H Diamond¹, Rameswar Singh¹, M Malkov¹, R Hajjar¹, G Tynan¹, T Long² and Rui Ke² ¹University of California San Diego, USA, ²South Western Institute of Physics, China Email: diamondph@gmail.com

Transport Physics of the Density Limit

Summary

- This work presents a theory of edge shear layer collapse for $n \rightarrow n_g$, the Greenwald density limit. This novel theory of shear layer collapse, in contrast to the earlier work, applies to the adiabatic regime which is relevant for present day hot tokamaks.
- The zonal shear flow screening length is calculated for plateau and Pfirsch Schluter regimes. Favorable poloidal magnetic field (B_{θ}) scaling persists in the plateau regime.
- Neoclassical screening and drift wave zonal flow dynamics are combined in a theory, which is then reduced to a novel predator prey model. Zonal noise, due incoherent mode coupling, is retained.
- The threshold condition for edge shear layer collapse is computed, and linked to a critical value of the dimensionless parameter $\rho_s/\sqrt{\rho_{sc}L_n}$ which underpins the density limit $n_g \sim I_p$. Here, ρ_s is ion sound radius, ρ_{sc} is screening length and L_n is density scale length. Zonal flows collapse when $\rho_s/\sqrt{\rho_{sc}L_n}$ falls below a critical value, determined by the zonal flow damping rate, turbulence nonlinear damping rate, triad interaction time and adiabaticity parameter. Smaller ρ_{sc} i.e., higher B_{θ} expands the regime of zonal flow persistence.
- Zonal flows collapse when the integrated particle source S falls below a critical value $S_c \sim B_{\theta}^{-3}$. That means the particle source, required to hold the shear layer, decreases with increasing current.
- The limiting initial edge density for shear layer collapse is derived and shown to scale favorably with plasma current. In a viscosity dominated regime, the critical edge density $n_c \sim B_{\theta}$, whereas in charge exchange friction dominated regime $n_c \sim B_{\theta}^2$.
- Zonal shear collapse, beyond $n > n_c$, can lead to edge cooling by a sequence of shear layer collapse \rightarrow increased edge transport \rightarrow edge cooling \rightarrow onset of radiative condensation and/or radiation

• Key physics: zonal flow drive is "screened" by neoclassical dielectric [Rosenbluth -Hinton 1998]. $\frac{\partial}{\partial t} \left\langle \left| \phi_k \right|^2 \right\rangle = \frac{2\tau_c \left\langle \left| S_k \right|^2 \right\rangle}{\left| \varepsilon(q) \right|^2}$; $\varepsilon = \varepsilon_{cl} + \varepsilon_{neo} = \frac{\omega_{pi}^2}{\omega_{ci}^2} \left\{ 1 + \frac{q^2}{\epsilon^2} \right\} k_c^2 \rho_i^2$ banana regime Neoclassical response • Poloidal gyro-radius ρ_{θ} emerges as screening length ! Effective ZF inertia \downarrow as $I_p \uparrow \rightarrow$ ZF strength increases with I_p • But edge region is most likely in Plateau regime. [T Long *et al* NF 2019] \rightarrow Need

But edge region is most likely in Plateau regime.[T Long *et al* NF 2019]→Need revisit R-H screening calculations.

Collisionali ty regimes	Screening length ρ_{sc}	Residual level $\frac{\phi_k(\infty)}{\phi_k(0)}$	<i>B</i> _∂ dependence	
Banana	$=\sqrt{\rho_s^2 + \rho_\theta^2} \approx \rho_\theta$	$\approx \left(\frac{B_{\theta}}{B_T}\right)^2$	Favorable	
Plateau	$= \sqrt{\rho_s^2 + \mathscr{L} \rho_\theta^2} \approx \mathscr{L}^2$	$^{1/2}\rho_{\theta} \approx \frac{1}{\mathscr{L}} \left(\frac{B_{\theta}}{B_T}\right)^2$	Favorable	

Conclusions

TH/P5-5

- We presented a theory of zonal flow collapse for n → n_g, valid for adiabatic regime which is relevant for present day hot tokamaks.
- Zonal flow screening lengths compare as $\rho_{sc}^{PS} \ll \rho_{sc}^{plateau} < \rho_{sc}^{banana}$. Favorable B_{θ} scaling persist in the plateau regime, which is a relevant regime for present day tokamak.
- Neoclassical screening and drift wave zonal flow dynamics unified, then reduced to a novel predator prey model. The threshold condition for zonal flow collapse calculated.
- Modulational growth of zonal flow $\sim B_{\theta}^2 \sim I_p^2$ and zonal noise $\sim B_{\theta}^4 \sim I_p^4$. Large I_p favors stronger zonal flow production and stronger feedback on turbulence.

Shear layer collapse criterion

• $\rho_s/\sqrt{\rho_{sc}L_n}$ emerges as the key dimensionless ratio which underpins the density limit. Zonal flows collapse when $\rho_s/\sqrt{\rho_{sc}L_n} < (\rho_s/\sqrt{\rho_{sc}L_n})_{crit}$. Smaller ρ_{sc} i.e., higher B_{θ} expands the regime of zonal flow persistence.

induced island growth. In this scenario, the radiative cooling is secondary (i.e., a consequence of) to the transport bifurcation. Thus, a transport bifurcation -i.e., edge shear layer collapse may trigger undesired macroscopic phenomena in the discharge. These results encapsulate the key transport physics underpinning the Greenwald limit.

Density limit basics

- Discharge terminates when line integrated density exceeds a critical value $\overline{n}_g = \frac{T_p}{\pi a^2}$.
- Why care? Fusion power $\propto n^2$.
- A fundamental limit on performance.
- Not a dimensionless number —more physics involved.
- Still begging the origin of current *I_p* scaling!?

Often associated with macroscopic phenomena

- Global thermal collapse, Radiative condensation / MARFEs
 Greenwald PPCF 2002
- Poloidal detachment, Divertor detachment
- MHD activity -radiation driven islands

Connections with transport physics Role of particle transport?

- A SOFT limit: Shallow pellet injection in plasma with $\overline{n} = n_G$ triggered transient particle increased relaxation to n_G by transport rather than by disruption! [Greenwald NF 1988]
- Shallow pellet injection avoids excessive edge cooling— No MARFEs, disruptions!
- Pellet in DIII-D beat Greenwald limit by peaked density profiles <---> enhanced core confinement. Accumulation of impurities---> increase in radiation---> disruption.[Mahdavi *et al* 1997]

With noise:

2 3 4 5 6

10⁻² lp/πa² [kA/m²]

• Both zonal flow and turbulence co-exist at any growth rate: - No threshold in growth rate for zonal flow excitation.

• Zonal flow energy is related to turbulence energy as $E_v = \beta E_t^2 / (\gamma_d - \sigma E_t) \uparrow$ with I_p .

- Turbulence energy never hits the modulational instability threshold, absent noise!
- Turbulence energy \downarrow and zonal flow energy \uparrow :- Noise feeds energy into zonal flow!

Shear layer collapse in adiabatic regime

- Relating density gradient to source S through particle balance yields a critical particle source S_{crit} for zonal flow collapse. Zonal flows collapse when $S < S_{crit} \sim B_{\theta}^{-3}$. \implies Particle source required to hold the shear layer decreases with increasing current.
- In terms of local edge density, zonal flows collapse when $n > n_{crit}$. In a viscosity dominated regime $n_{crit} \sim B_{\theta}$ and in charge exchange friction dominated regime $n_{crit} \sim B_{\theta}^2$.

After collapse

- Zonal flow collapse can lead to edge cooling by a sequence of shear layer collapse→ increased edge transport→ edge cooling→ onset of radiative condensation and/or radiation induced island growth.
- Thus, the radiative cooling is secondary (i.e., a consequence of) to the transport bifurcation.

Implications for other devices

- Density limit is linked to shear layer collapse which is (in part) controlled by neoclassical screening response.
- In stellarators, the principal correction to classical screening is due to helically trapped particles.
- This has no obvious length scale other than ρ_i the zonal flow screening is classical. Thus the "effective inertia" for zonal flows in stellarators is lower than that for tokamaks.

Towards the big picture

All of the L \rightarrow H transition, L-mode with and without shear layer and the density limit regime can be unified in a space of edge fueling S_n and core heating Q in this way.

- Disruption ensuing as a secondary consequence of strong edge cooling due to gas fueling/ radiative cooling.
- Recent experiments and theory suggest that density limit phenomenology emerge from the collapse of edge shear layer leading to increased turbulence, transport and edge cooling, et seq. [Hong *et al* NF 2018, Hajjar *et al* PoP 2018]

Recent experiments

• Zonal flows collapse when the dimensionless scale length ratio $\rho_s / \sqrt{\rho_{sc} L_n}$ falls below a critical value determined by, determined by the zonal flow damping rate γ_d , triad interaction time Θ , and the adiabaticity parameter $\hat{\alpha}$.

0.6

 Note that smaller ρ_{sc} i.e., higher B_θ enlarges the regime of zonal flow persistence. Critical particle source and critical density for shear layer persistence
 The criterion for zonal flow collapse based on the dimensionless parameter ρ_s/√ρ_{sc}L_n can be cast into criterion based on particle source S = ∫dx ⟨νσ⟩_i n_nn using the particle balance. [details in Appendix2]

$\frac{S}{nc_s} > \frac{\rho_{sc}^3}{\rho_s^3} \left[\frac{\eta}{\Omega_i}\right]^{1/2}$	$\frac{\gamma_d}{\left[\frac{\gamma_d}{2k_x^2\rho_s^2\Theta\Omega_i^2}\right]^{3/2}}$	${}^{2}\left[\frac{q_{\perp}^{2}\rho_{s}^{2}}{\hat{\alpha}}\right]^{1/2}$	$\left[\frac{\left(1+q_{\perp}^2\rho_s^2\right)}{q_y^2\rho_s^2}\right]^{1/2}$
		LJ	

• Critical particle source required to hold shear layer decreases with plasma current $S_{crit} \sim \frac{\rho_{sc}^3}{\sigma^3} \sim B_{\theta}^{-3}$.

• This inequality can be converted into limit on local edge density. For viscosity dominated regime $\gamma_d = \gamma_{visc}$, the allowed density range for zonal flow persistence becomes

 $n < \frac{\rho_s}{\rho_{sc}} \left(\frac{S}{c_s}\right)^{1/3} \left(\frac{n\hat{\alpha}}{q_{\perp}^2 \rho_s^2}\right)^{1/6} \left[\frac{2\Theta \Omega_i^2}{\rho_i^2 \nu_{ii} / \rho_s^2 n}\right]^{1/2} \left[\frac{\Omega_i}{\eta}\right]^{1/6} \left[\frac{q_y^2 \rho_s^2}{(1+q_{\perp}^2 \rho_s^2)}\right]^{1/6}$

• In viscosity dominated regime, zonal flows collapse when the local density $n > n_{crit} \sim \frac{\rho_s}{\rho_{crit}} \sim B_{\theta} \sim I_p$.

- In charge exchange friction dominated regime, the critical density for zonal flow collapse has
- $n_{crit}qR = B_T$ appears to be related to the minimum in the power threshold for L \rightarrow H transition.
- This may be due to the onset of pre-transition shear layer decay for $n/n_G = < 1$.
- This in turn weakens the 'seed' shear which initiates the $L \rightarrow H$ transition, and thus necessitates an increase in the power required for the transition.

electrons: HDM theory and its limitations • Clearly, shear layer collapse, increased turbulence and transport as $n \rightarrow n_g$!

• Plasma response for Hasegawa - Wakatani :- HDM Theory[Hajjar, Diamond, Malkov 2018]

- Can not explain the origin of plasma current associated with shear layer collapse.
- Connection of shear layer collapse scenario with Greenwald scaling $\overline{n}_g \sim I_p$?

somewhat stronger dependence on poloidal field i.e., $n_{crit} \sim \frac{\rho_s^2}{\rho^2} \sim B_{\theta}^2 \sim I_p^2$.

Consequences of shear layer collapse Enhanced transport due to shear layer collapse can aggravate excitation of MARFEs and /or radiation driven islands due to enhanced edge cooling, which can lead to disruption of discharge.

Suggestions for experiments

- Scale of shear layer collapse and its relation with screening length.
- Pellet/SMBI experiment of Greenwald with relevant fluctuations measurements. Relate the density relaxation time to the predictions based on transport dynamics.
- Is the critical edge density with RMP lower than without? Is this because zonal shears are already weekend by the RMP?

• Can edge biasing sustain $n > n_g$ by driving the edge shear layer, externally?

• Is the shear layer collapse transport bifurcation hysteretic or not?

Future directions in theory

• Interplay of B_{θ} scaling via ρ_{sc} with B_{θ} scaling from $k_{\parallel} = 1/qR$ (i.e., from Landau damping!?)

• H-mode density limit: H-L back transition by mean ExB shear collapse? Mechanism of mean shear collapse at high density?

• How flux surface shaping effects the shear layer collapse criterion? Can negative triangularity sustain $n > n_g$?