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o Drift-kinetic theory presented for particle response to narrow magnetic
islands, w~pg;, in a low collisionality plasma >
eParticle streamlines lie on “drift surfaces”, forming “drift islands” for “ Q\
D
passing particles - similar to magnetic islands, but shifted radially by ~pe; \\\
. . . . V>0
eConsequence is a gradient across small islands, suppressing bootstrap N
) - ) . X
current perturbation, resulting in a threshold width for island growth ~few - -
ion banana widths, qualitatively consistent with experiment 4
Distribution function across the magnetic island region for v;;>0 (red curve),
BACKGROUND v(/<0 (blue curve) and the average over the two streams (black curve), which

provides a measure of density for (a) pg<<w, (electrons), and (b) pg~ w, (ions).
Quasi-neutrality restored by electrostatic potential

current density in the vicinity of a rational surface of a tokamak plasma
OUTCOME

e Creates magnetic island structures, that short-circuit transport, thus

e Neoclassical Tearing Modes (NTMs) arise from a filamentation of the

removing pressure gradient inside island: Collisional layer connecting trapped and passing phase space needs

o Perturbs bootstrap current, reinforcing filamentation and driving special treatment o017
oours
island to large widths ooure{ 550072
oo
o Degrades confinement oo 085 0B0 08
A
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e Experiment identifies a threshold island width, comparable to ion
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poloidal Larmor radius, that must be exceeded for island growth

Collisional
e Quantifying NTM control or avoidance strategies for ITER will benefit from 001681 passing o = +1 boundary
layer
a prediction of the threshold 71 vappedo = 0,
e We present a drift-kinetic theory for the particle response to small islands, o ke
to quantify the current filamentation and predict the threshold Layer current (Ajoc) is stabilising for w<w~1.5 ion banana widths
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e Small islands are considered, so we expand drift-kinetic eqn for non- & 0 Q: 0010
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e Toroidal, canonical angular momentum, py=y-Iv|/Qc is conserved to _izg = 33.525:5:10'3 00050
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. ) ) ) ) Currents penetrate deeper into island for smaller widths
¢ Averaging next order over particle orbits, (:-- ), provides equation for go:
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Parameters: ¢=0.1, Lo/w=1, 1/Lp=0, L/L;=1, ®=0

CONCLUSION AND FUTURE WORK

¢ Finite ion banana width effects are a key part of the NTM threshold

physics, predicting a critical island width similar to experiment
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Constant S colour contour plot compared to magnetic flux surfaces for trapped (left)
and passing (right) particles (magnetic island separatrix is red dashed curve)

¢ Motivates additional extensions to the theory:

e Torque balance and mode propagation frequency effects
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Low collision frequency
e Reduces to a 3-D system go(p¢, &, A, v; 6)=go(S, X, v; ©)
o Satisfies a collisional constraint equation, averaged over S contours (- )s
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