

QST

Mechanism of toroidal flow generation by electron cyclotron heating in HSX and LHD plasmas

P5-#824

Y. Yamamoto^{1,2}, S. Murakami¹, S.T.A. Kumar³, J.N. Talmadge³, K.M. Likin³, D.T. Anderson³, H. Yamaguchi⁴, C.C. Chang¹, H. Takahashi⁴, K. Ida⁴, M. Yoshinuma⁴ and LHD Exp. group⁴

> Department of Nuclear Engineering, Kyoto University¹ National Institutes for Quantum and Radiological Science and Technology² Department of Electrical and Computer Engineering, University of Wisconsin-Madison³ National Institute for Fusion Science⁴

Abstract

✓ Spontaneous plasma flows have been observed in electron cyclotron heating (ECH) plasmas in HSX and LHD.

PLADyS

- \checkmark We uncover that supra-thermal electrons generated by ECH can apply forces on the plasma through J×B and collisions, and the J×B force overcomes the collisional force in HSX and LHD.
- \checkmark We evaluate the parallel flow, solving the momentum balance equations and the diffusion equation. \checkmark As a result, the obtained flows have reasonable agreement with the experiments.

Simulation results

The Large Helical Device (LHD)

The helically symmetric experiment (HSX)

There are two typical configurations for HSX. ✓ Quasi-Helical Symmetry (QHS) configuration It has a single dominant helical component, B(4,1). ✓ Mirror (FL14) configuration

Two toroidal mirror terms, B(4,0) & B(8,0), break the helical symmetry. Neoclassical viscosity of Mirror config. is larger than that of QHS config.

Force direction

Introduction

- \checkmark It has been observed that the toroidal flow and its shear are important for plasma confinement and MHD stability in many experiments.
- In a future reactor, NBI heating is not enough to drive a toroidal flow because of its high density and large size.
- Another method to drive the toroidal flow is required.
- Recently, the spontaneous toroidal flows driven by \checkmark ECH has been observed in many tokamak and helical devices, e.g. JT-60U, LHD, HSX.
- In the previous studies, we have found that ECH \checkmark can make the J×B & collisional forces, and the J×B force overcomes the collisional force in a nonsymmetric configuration.
- In this study, we evaluate the toroidal flow driven \checkmark by ECH force, and compare simulation results with experiments.

Comparison with experiments

We solve the momentum balance equation and Ampere's law to evaluate the toroidal flow and the radial electric field.

$$m_{i}N_{i}\frac{\partial}{\partial t}\langle \boldsymbol{B}\cdot\boldsymbol{U}\rangle = -\langle \boldsymbol{B}\cdot\boldsymbol{\nabla}\cdot\boldsymbol{\Pi}_{i}\rangle - m_{i}N_{i}\nu_{in}\langle \boldsymbol{B}\cdot\boldsymbol{U}\rangle$$

$$m_{i}N_{i}\frac{\partial}{\partial t}\langle \boldsymbol{B}_{P}\cdot\boldsymbol{U}\rangle = -\frac{\sqrt{g}\boldsymbol{B}^{\zeta}\boldsymbol{B}^{\alpha}}{c}\langle \boldsymbol{J}_{plasma}\cdot\boldsymbol{\nabla}\rho\rangle - \langle \boldsymbol{B}_{P}\cdot\boldsymbol{\nabla}\cdot\boldsymbol{\Pi}_{i}\rangle - m_{i}N_{i}\nu_{in}\langle \boldsymbol{B}_{P}\cdot\boldsymbol{U}\rangle$$

$$(+\text{Diffusion torm})$$

 $\frac{\partial}{\partial t} \frac{\partial \Psi}{\partial \rho} \langle \nabla \rho \cdot \nabla \rho \rangle = 4\pi \big(\langle J_{plasma} \cdot \nabla \rho \rangle + \langle J_{ext} \cdot \nabla \rho \rangle \big)$

- Trapped supra-thermal electrons generate electron current due to the radial diffusion.
- Return current, J_r, cancels the electron current by ambipolar condition.
- The coupling with B makes the J_r×B force.
- The supra-thermal electrons drift toroidally due to the precession motion.
- During the slowing down, they transfer their momenta to the bulk plasma due to collisions.
- This is the collisional force.

Simulation model

GNET code [S.Murakami, NF (2000)]

✓ GNET code solves a linearized drift kinetic equation for

- The direction of the force is counter (co) direction in the inner (outer) region of the ECH heating location, and it qualitatively agrees with the experimental toroidal flow change.
- We can see the ECH force can be comparable with the NBI force.

Comparison with experiments

We evaluate the toroidal flow velocity in the steady state by solving momentum diffusion equation.

 $\frac{\partial V}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r D \frac{\partial V}{\partial r} \right) + \frac{1}{m_i n_i} \left(F_{\rm ECH} + F_{\rm NBI} + F_{\rm NTV} \right)$ $F_{\rm NTV} = -m_i n_i \mu \left(\delta B/B\right)^2 V$

- In the case of the completely helically \checkmark symmetric configuration, the helical components cancel each other.
- There is a net force in the symmetry direction even in QHS config. because other small magnetic modes enhance the radial diffusion.
- The force in Mirror config. is about twice as large as that in QHS config. despite the less absorbed power.
- The obtained velocity has reasonable agreement with experiment, especially with the diffusion effect.

energetic electrons in 5-D phase space based on the Monte Carlo technique.

$$\begin{array}{ll} \frac{\partial \delta f}{\partial t} + (\mathbf{v}_d + \mathbf{v}_{\parallel}) \cdot \frac{\partial \delta f}{\partial \mathbf{r}} + \dot{\mathbf{v}} \cdot \frac{\partial \delta f}{\partial \mathbf{v}} - C^{coll} = S^{ql} \\ \delta \mathbf{f} : \text{ oscillation part of velocity} & \mathbf{v}_{\parallel} : \text{ parallel velocity,} \\ \text{distribution} & S^{ql} : \text{ECH quasi-linear} \\ \mathbf{v}_{d} : \text{drift velocity,} & \text{diffusion operator} \\ C^{coll} : \text{ Collision operator,} \end{array}$$

ECH quasi-linear source term

- We reproduce the co-rotating toroidal flow quantitatively in the balanced-NBI+ECH heated case.
- With the relatively large coefficient (D = 0.5 & 3.0), the toroidal flow velocity increases over the entire minor radius.
- We see a difference in the toroidal flow profiles in the co-NBI+ECH heated case.

Conclusion

We have evaluated the J×B and collisional forces and toroidal flows using GNET code in order to clarify the mechanism of the toroidal flow change in HSX and LHD. ✓ The obtained force by ECH is the same

- order as NBI force, and its direction agree with experiment observation.
- \checkmark The evaluated toroidal flows have reasonable agreement, except for the co-NBI+ECH case of the LHD experiment.
- It indicates that ECH force would drive the toroidal flow.

28th IAEA Fusion Energy Conference, 10-15 May 2021, On-Line