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<+ Significant fast ion population can be generated by applying the 3-ion ICRF
heating schemes In which large fraction of ICRF energy Is absorbed by beam
lons [1, 2]. The 3-ion schemes are applied to mixed plasmas discharges with at
least two thermal ion species. The TRANSP code [3, 4] allows to model thermal
and fast ion transport consistently thanks to build in modules for various heating
schemes and multiple options to describe thermal ion transport.

“» We assess Influence of the uncertainties in the input parameters and thermal ion
transport models on the simulation results and contribute to development of the
fast ion transport models.

<» Two main mechanisms are responsible for fast ion redistribution: reconnection of
magnetic field lines between the plasma axis and g = 1 surface that ions are tend
to follow and resonance interaction between the internal kink mode and ions.

<» We Investigate differences In transport models accounting for resonant and non-
resonant interaction between fast ions and sawtooth instability with the ORBIT
code [5] and the Kadomtsev model [6] iIn TRANSP correspondingly.

2. Interpretative analysis of a mixed plasma discharge

JET #91257 95% H, 5% D plasma discharge

- 3.2 MW D-NBI (100 keV), 2.4 MW ICRH (25 MHZz); EFIT++ plasma boundary time evolution;
- T, and n, fitted profiles are based on HRTS and ECE (for T,) diagnostic measurements;

+ sawtooth crash times are extracted from the ECE T, central signal;

- NUBEAM [7] for fast ion tracking and TORIC [8] for RF wave propagation and absorption;

- the Kadomtsev sawtooth reconnection model for all plasma species;

- the RF-kick operator [9] is used to compute RF-NBI resonance energy exchange,;

- limitations due to a lack of data: Be9 single impurity, Z_« = 1.2, T=T,, no plasma rotation.
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— Predicted g-profiles reproduce sawtooth cras
— TRANSP neutron rate reproduces main trends in the measured neutron rate.

— TRANSP and EFIT++ computed energy has less than 5% difference. 5% uncertainty Iin
Input T, or n, results in 5% variation in the plasma energy (shaded).

nes, the mixing radius p,,,=0.3 (=250 cm).

2.1 Thermal ion transport model
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» With increased diffusivity ny is reduced,
though it still increases during the simulation
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— Prescribed ng/n, is used in the TRANSP interpretative simulation to reduce
uncertainties in fast ion transport analysis.
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— Most of neutrons are produced by the D (beam) + D (thermal) fusion reaction.
Overestimated transport of beam ions might result in the lower neutron rate.
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1. Introduction 3. Transport of fast ions

Non-resonant fast ion transport: the Kadomtsev sawtooth reconnection model; according to
theory in [10] there is a critical energy below which fast ions are strongly redistributed.

Resonant fast ion transport: the ORBIT code is the Hamiltonian guiding center particle motion
code that analyses fast ion transport in terms of their energy, toroidal canonical momentum and

magnetic moment; ORBIT computes response of unperturbed particle distribution provided by
TRANSP to a magnetic perturbation caused by an instability.
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place up to 600 keV
for trapped particles
and up to 800 keV for
passing particles, i.e.
higher than
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theoretical E_.;,.

» Overall effect on
energetic D ion
distribution is smaller
In ORBIT than in
TRANSP.
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— Resonant transport can significantly perturb distribution of high-energy fast ions.

3.1 Transport of fusion products
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<+ Fusion products such as high-energy H ions have very peaked profiles which can be

significantly affected by the sawtooth crashes.
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— Resonance interaction between trapped particles and the sawtooth instabllity Is
observed up to 1 MeV, i.e. up to energies much higher than E,1, = 200 keV

Resonance location

- Resonance transport
for H fusion ions is
observed mostly for
CO-passing particles.
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different
energies ORBIT can reproduce Iincomplete
redistribution of fast ions by a sawtooth crash.
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types and < The assumption on similar transport properties of

electrons and thermal ions leads to overestimated D
thermal ion density, thus the neutron rate.

Increased D thermal Ion transport is expected
referring to TRANSP simulation results and the edge
measurements of the hydrogen isotope ratio.

For fast ions of high energy, likke D beam ions
accelerated by RF-waves and H fusion ions, the
dominant mechanism of their redistribution by a
sawtooth crash Is resonant interaction between the
sawtooth instability and fast ions.

For the considered case, the sawtooth model that
tends to flat fast ion profiles within the mixing radius
IS overestimating transport of fast ions.
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