

Stabilization of vertical plasma position in the PHiX tokamak with saddle coils

S. Naito^{1*}, M. Murayama², S. Hatakeyama², D. Kuwahara³, Y. Suzuki⁴, H. Tsutsui¹, S. Tsuji-lio¹

¹Institute of Innovative Research, Tokyo Institute of Technology ²National Institutes for Quantum and Radiological Science and Technology (QST) ³College of Engineering, Chubu University ⁴National Institute for Fusion Science (NIFS)

*Email: naito.shin@torus.nr.titech.ac.jp

ABSTRACT

- •Saddle coils (SCs) were proposed as coils with a stabilizing effect of a vertical plasma position by a non-axisymmetric field, which can generate an averaged magnetic field along the magnetic field line.
- •This stabilizing effect of SCs was investigated by the experiments in a small tokamak, PHiX.

OUTCOME

Results of tokamak discharges with SCs in PHiX

The stabilization of the vertical positions was confirmed when n-index was

•3D equilibrium calculation using VMEC was also performed to investigate whether elongated cross-sections were obtained in the experiments.

BACKGROUND

•To reduce the cost of a fusion power plant, it is necessary to make a device with high β and high energy confinement time, for that purpose, it is necessary to realize a high elongation ratio κ .

•But there is an upper limit of the κ which can be realized in principle and technically. In addition, considering safety, the κ of the power plant will be smaller than the value that can be realized in existing devices.

•On the other hand, it has been reported that a *non-axisymmetric* magnetic field can stabilize the vertical position of plasma with an elongated cross-section[1].

•In order to overcome the above limitations, we aimed to realize a vertically stable and elongated tokamak plasma with a non-axisymmetric magnetic field of SCs.

position of the plasmas R_{p} , (e)n-index on plasma positions, (f) loop voltage V_{loop} , (g) line electron density Ln_{e} along the line of Z = 0.

*kAturn, (c) I*_{*SC} = 2.4 kAturn with inverted current*</sub> direction in side-installed SCs.

• Merit of SCs: A simple structure

Easy to manufacture and install

Not increasing the device size

the inside of the torus

METHODS

Experiments in a small tokamak, PHiX

- The non-axisymmetric field generated by SCs and TFCs were superposed to vertically unstable tokamak plasmas. Feed-back controls of position were not used in all experiments.
- Each SCs generated a magnetic field in the direction of the arrow in FIG. 1 and the curved magnetic field structure and the averaged magnetic field B^{ave} were obtained as FIG. 3 & 4.

FIG. 7. Time evolution of each parameters in tokamak discharges with divertor coils. The physical quantities shown in (a) \sim (g) are the same as in FIG. 5.

FIG. 9. Ensemble of vertical drift speed versus I_{SC}^2 with discharges whose n-index were ~ -0.7 and initial vertical position Z_p was $1.0 \le Z_p \le 3.5$ cm.

FIG. 8. Images of the plasma of tokamak discharges with divertor coils. (a) $w/o I_{sc}$, (b) I_{SC} = 4.9 kAturn.

Calculated magnetic flux surfaces

FIG. 10. Magnetic surfaces calculated with the condition of (a) FIG .5, (b) FIG. 8 The calculated value of κ_{ave} was 1.25 in (a) and 1.58 in (b) of FIG. 10.

FIG. 3. (a) The magnetic field line projection of the poloidal plane, (b)the Poincaré plot of magnetic field line.

3D equilibrium calculation by VMEC[2]

Check if an elongated cross-section tokamak plasma can be generated with SCs and calculate the averaged κ in the toroidal direction (κ_{ave}).

CONCLUSION

•By the experiments, it was confirmed that the averaged magnetic field generated with SCs and TFCs could *stabilize the vertically unstable* plasmas whose n-index was \geq -1.3.

•With SCs, even if the vertical position could not be maintained as constant, the drift speed could be mitigated.

•3D equilibrium calculations with VMEC have suggested that *the vertically* stabilized plasmas were the plasmas with an elongated cross-section.

ACKNOWLEDGEMENTS / REFERENCES

This research is performed with the support of the Grant-in-Scientific Research (17K06990) and NIFS for Aid Collaboration Research Program (NIFS18KOAP033).

[1] M. C. ArchMiller et al., Phys. Plasmas 21 (2014) 056113. [2] S. P. Hirshman et al., Comput. Phys. Commun. 43 (1986) 143.