FORMATION OF THE RADIAL ELECTRIC FIELD PROFILE IN WEST THE TOKAMAK

L. Vermare1, P. Hennequin1, M. Peret2, C. Honoré1, C. Bourdelle2, F. Clairet2, R. Dumont2, N. Fedorczak2, M. Goniche2, J. Gunn2, P. Maget2, J. Morales2, R. Varennes2 and the WEST team

1 Laboratoire de Physique des Plasmas
Ecole Polytechnique, 91128 Palaiseau, France

2 IRFM, CEA, Cadarache, 13108 Saint Paul lez Durance
Context and motivations

Micro-turbulence generates **radial transport** of heat and particles reducing fusion plasma performances

Tilting and decorrelation of turbulence by **sheared ExB velocity** reduces turbulent transport

[Z. Lin, Science1998]

Shearing coming from mean flow (equilibrium flow) & ZF have the same impact on turbulence
Reduction of turbulence in transport barriers

EXPERIMENTALLY => above a certain **threshold in power** crossing the separatrix

Edge barrier formation:
- transition to a High confinement mode (**H mode**)
 - **core pressure x2**
 - strong turbulence reduction at the core/edge interface
 - strong associated sheared flows

coming from pressure gradient and turbulence generated flows

Sensitive to the magnetic configuration
when $B \times \nabla B$ drift is directed toward the active X-point, P_{LH} is lower
= **favorable configuration**

[Ryter, NF2013]

and **correlated with $V_{\text{E}\times B}$ shear** (proxy $\text{min}(V)$)

[Cavedon, NF2020]

-Dynamics of the transition not completely understood

-> Sensitivities of the power threshold to the magnetic topology
Detection of the back-scattering electric field $E_d(t)$:

$$E_d(t) \propto \int \hat{n}(r,t)e^{i k r} d^3r = \hat{n}(k,t)$$

⇒ Measurement of the speed of density fluctuations with:
- spatial localization
- spatial scale selectivity

Perpendicular velocity in the laboratory frame:

$$V_\perp = V_{E \times B} + \left\langle \omega / k \right\rangle_{fluc}$$

considering $V_{E \times B} \gg \left\langle \omega / k \right\rangle_{fluc}$ -verified experimentally at this edge-
Radial shear of Er stronger in LSN configuration

In low power & low plasma current discharges, no well in the Er profile in USN while the profile exhibits a moderate but clear well just inside the separatrix in LSN.

Ohmic discharges @ \(I_p = 400kA \) (i.e. \(q_{95} = 5 \))

![Graph showing Ohmic discharges](image)

while density profiles are similar

\[V_{\text{min}} = -2 \text{km/s} \]

Similar observations on AUG [Schirmer, NF 2006]
on DIII-D [Carlstrom, PPCF 2002]
on MAST [Meyer, JoP 2008]
and same tendency changing contact points on Tore Supra [Hennequin, EPS2010]

This observation is consistent with the common belief that LSN (magnetic drift toward X point) is a favourable configuration.
Impact of the plasmas current depends on the magnetic conf.

Experiments performed to study the impact of plasma current on both configurations

⇒ The velocity profile forms a well when increasing the plasma current in USN
⇒ A weaker effect is observed in LSN
⇒ Leading to an opposite situation = USN more “favorable” in WEST?
First **L-H transitions** have been obtained in WEST plasmas => no clear H-mode regime but several signs of the transition (energy increase, internal inductance decrease, edge steepening of density profile, flux on divertor target decrease, reduction of gas puff rate...)

Heat power crossing the separatrix close to the threshold with high level of radiation => oscillatory regimes

Transitions have been also observed in USN configuration => Similar simultaneous sign of transition but different behavior
Density pedestal & Er well formed consistently

\[\text{Picrh} = 0.9\text{MW} \]
\[\text{PLH} = 3.8\text{MW} \]
\[\text{Prad} = 2\text{MW} \]

\[\Rightarrow \] Establishment of a **density pedestal**

\[\Rightarrow \] Formation of a **deeper well just inside the separatrix**

\[\Rightarrow \] Deepening of the profile consistent with neoclassical prediction (Er \(\propto \nabla P \))
Transitions also observed in USN

Picrh = 1.5MW
PLH = 4MW
Prad = 2MW

Density profiles (from fast sweep reflectometry)

- Increase of the density gradient at the edge
- Less clear density pedestal as compared to LSN

Velocity profiles (from DBS)

- Deepest well observed in WEST so far
- Deepening of the profile not completely consistent with neoclassical prediction ($Er \propto \nabla P$) at least from the $\nabla n/n$ contribution, role of ∇T?
Dynamics similar to I-phase observed in USN configuration

Profiles from averaged value of the Doppler frequency

Dynamics changes from oscillatory to burst events similarly to the behavior observed during an I-phase [Conway, PRL2011] [Hennequin, private communication]
Summary

• Low power & low current discharges: no Er well in the USN configuration

• Strong sensitivity of the Er well to the plasma current in USN
 – Surprising since no dependence with Ip on the scaling law of power threshold [Martin, JFCS 2008]
 – On the other hand, safety factor enters into play through several mechanisms that generate Er (orbit losses, neoclassical viscous damping, turbulence drive...)
 – Investigation through reduced model based on edge turbulence [Peret, NF2021] and study of the competition between turbulence and magnetic ripple [Varennnes]

• At high power or high current, the velocity profile is more sheared in USN than in LSN against the expectation considering favorable (i.e. LSN in WEST) versus unfavorable (USN in WEST) configuration

• L-H transitions are observed in LSN configuration, with density pedestal formation concomitant with Er well formation => consistent with neoclassical picture

• Transitions also observed in USN, with a deeper Er well and less pronounced density pedestal & Er dynamics similar to observation on ASDEX Upgrade during some I-phases

⇒ Continue exploring both configurations and the higher density branch, as well as I-mode access