

Work performed under EUROfusion WP-PFC

Long discharges in steady state with D₂ and N₂ on the actively cooled tungsten upper divertor in WEST

T Loarer¹, T Dittmar², E Tsitrone¹, R Bisson³, C Bourdelle¹, S Brezinsek², J Bucalossi¹, Y Corre¹, L Delpech¹, C Desgranges¹, G De Temmerman⁴, D. Douai¹, A Ekedhal¹, N Fedorczak¹, A Gallo³, J Gaspar⁵, J Gunn¹, M Houry¹, P Maget¹, R Mitteau¹, P Moreau¹ and WEST team^{*}

¹ CEA IRFM, F-13108 St Paul Les Durance, France

² Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung – Plasmaphysik, Partner In the Trilateral Euregio Cluster, 52425 Jülich, Germany

³Aix-Marseille University, CNRS, PIIM, Marseille, France

⁴ ITER Organization Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France

⁵ Aix Marseille University, CNRS, IUSTI, Marseille, France

Context and Objectives

- In future fusion devices (ITER, DEMO) [1, 4]

 \rightarrow Impurity injection to enhance the "edge" radiative fraction ~90%

 \rightarrow "Cool" the edge plasma and prevent Plasma Facing Components (PFC) damages.

- Nitrogen (N₂): viable seeding candidate for the size and conditions of present day divertors. However, potential reactivity of N_2 with hydrogen isotopes can lead to tritiated ammonia (NT_3) as well as ND_x and NT_y formation.

 \rightarrow Should be considered: regen. of cryo pumps and processes in de-tritiation plants [5].

- AUG N₂ seeding through the private flux region (Inertial W coated PFCs & H-mode) [6] - JET-ILW N₂ seeding in the OSP region (GIM 10) (Inertial W coated PFCs & L-mode) [7]

N plasma radiation (UV range)

For the pulse # 55790 (b), following a strong N_2 injection during 30s no NVII signal is observed in this early plasma phase contrary to pulse **55792** (r) where N_2 is injected in the early plasma phase (green signal from 0 to 3s) \rightarrow No N₂ legacy

thierry.loarer@cea.fr

Steady state phase of the NVII signal for t>30s whilst it drops as the N_2 injection is stopped.

Experiments in WEST [8, 9] \rightarrow Long pulse operation in W divertor and N₂ seeding [10, 11] - Ammonia formation in a <u>full actively cooled</u> tungsten device

- Improve the understanding of physics of ammonia production, decomposition and transport in a magnetically confined plasma devices.

Experiments

For the whole session, the N₂ injected through the OSP region is ~ 18,65 Pam³

Reminder: session of Dec 2018, total of 5.4 Pam³ injected though OSP (6 pulses with injection for 6s @0.15 Pam³s⁻¹). For **# 55792**, a total of :

9.49 Pam³ of D₂ has been injected (4.58×10^{21} D & 4.58×10^{21} e⁻ injected) 6.32 Pam³ of N₂ has been injected (3.1×10^{21} N & 21.3×10^{21} e⁻ injected)

Exp with active pumping (<u>cryo pumps</u>) on

- AUG \rightarrow up to 7.8x10²¹ Ns⁻¹ through the private flux region
- JET-ILW \rightarrow up to 1.4x10²² Ns⁻¹ through the SOL (GIM 10 and OSP on tile 5)

Main plasma parameters and typical plasma discharge

- I_p= 400 kA, B_T=3.7 T, P_{LH}= 3.0 MW, n_e=3.3x10¹⁹m⁻², P_{RAD}= 1.7 MW (f_{RAD}~ 55%), L-mode. - Repetitive 5 long discharges (~50s range) - 1 ref w/o N₂ and 4 with N₂ inj from OSP (18,65 Pam³) - USN, no active pumping, 40 pulses after the last boronisation : 452 s (7:32 min) of plasma

20 30 40 Time (s)

* See

- Since **no active pumping** -> both steady state and the drop are signatures of a reservoir filled from pulse to pulse & only partially recovered in between pulses by outgasing \rightarrow W coating reservoir [13, 14] - After 4 pulses (18.65 Pam³ of N₂ inj.), no legacy/limit (\pm same initial level at the beginning of each pulse)

N₂, recovery after the discharge

 \sim 30% of the N₂ released after the discharge. Negligible N₂ recovered/pumped during the pulse.

RGA Analysis – ND₃?

- Even in # 55792 which contained the most nitrogen, there is no ND₃ detected in the RGA (Pulse and outgasing phases).

Main radiative impurities: W, O, Cu (LH) and C.

- Over all these experiments, in the absence of active pumping, the cumulative effect N₂ over the duration of the injection is very weak and legacy is negligible

CONCLUSIONS [11]

- In AUG \rightarrow No ND₃ in the mid-plane during the pulse, but detected during the outgasing phase.

- Likely the same behaviour as in JET: "ND₃" created too far away from the RGA system.

- The produced ammonia sticks to the walls and is then released on long time scales and below the sensitivity of the RGA [10].

Long discharges (>55s) in steady state, in Upper Single Null, L-mode, N₂ injection through OSP. 5 long pulses: 237 s of plasma (~4min), 18.65 Pam³ of N₂ injected (up to 35s @0.21 Pam³s⁻¹).

- Although **no active pumping**, weak effect on the radiated power (edge and bulk)
- Steady state reached & drop of the radiation as the injection is stopped
- No ND₃ detected during the pulse and during the outgasing phase.
- No legacy although "only" 35% of N2 recovered (up to 70% during disruption).
- N₂ balance over such long time scales and in the absence of active pumping suggests:
 - Majority of the injected N_2 retained in the upper divertor W coating (15-20 μ m).
 - Porosity larger than W bulk enhancing the volume of this N reservoir \rightarrow No saturation
 - Prior to saturation, not enough N is available for ND₃ formation \rightarrow no ND₃ detected
 - Consistent with experimental results in both JET-ILW and ASDEX-Upgrade

Further experiments with the fully actively cooled lower divertor made of ITER-like Plasma Facing Units (bulk) and enhanced N_2 injection.

- Very weak increase of the edge radiation

Improved confinement mode observed during similar series of pulses [12]

Edge plasma parameters (Langmuir Probes)

REFERENCES

[1] "ITER Research Plan within the Staged Approach", ITER Technical Report ITR-18003 available at: https://www.iter.org/technical-reports. [2] R Pitts et al., Nuclear Materials and Energy 20 (2019) 100696. [3] A Kallenbach et al., Plasma Phys. Control. Fusion 55 (2013) 124041 [4] C Giroud et al., Plasma Phys. Control. Fusion 57 (2017) 035004. [5] R Walker et al., Fusion Engineering and Design, 124 (2017) 892-895. [6] A Drenik et al., Nuclear Fusion 59 (2019) 046010 (18pp). [7] M Oberkopfer et al., Journal of Nuclear Materials, Vol 438, July 2013, pages S258-S261. [8] J Bucalossi et al., Fusion Engineering and Design, 89 (2014) 907–912. [9] C Bourdelle et al., Nuclear Fusion 55 (2015) 063017 (15pp). [10] T Dittmar et al., Physica Scripta T171 (2020) 014074 (5pp) link [11] T Loarer et al., Nucl. Fusion 60 (2020) 126046 (12pp) link [12] X Yang et al., Nucl. Fusion 60 (2020) 086012 (14pp) link [13] D Neuwirth et al., Plasma Phys. Control. Fusion 54 (2012) 085008 (10pp) 54 085008 [14] G Meisl et al., New Journal of Physics 16 (2014) 093018

ACKNOWLEDGEMENTS

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 63253. The views and opinions expressed herein do not necessarily reflect those of the European Commission or of the ITER Organization.