ID: 1205 Investigations of coupling MHD duct flows under inclined magnetic fields

Xiujie Zhang, Lei Wang, Chuanjie Pan, Zhenchao Sun Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, People's Republic of China zhangxj@swip.ac.cn

Motivation and background

- •The interaction between a flowing electrically conducting fluid and an external applied magnetic field in a liquid metal blanket will modify the heat transfer and velocity distribution significantly and cause an extraordinary pressure drop.
- •In real fusion reactor blanket configurations, the ducts which liquid metal flows through are usually electrically conducting coupled, and there is a certain angle between the confinement magnetic field and the side walls of the fluid channels.

Electromagnetic coupling effect suppresses 3D MHD effect

- •The electromagnetic coupling effect in inclined transversal magnetic fields will dramatically modify the velocity and pressure distributions in the flow field, causing reversed flows and an increased pressure loss.
- •In addition, 3D effect induced by the gradient magnetic fields has a noteworthy impact on the velocity distribution and pressure drop in the flow channels.
- •Therefore, it is important to investigate liquid metal coupling ducts MHD flows under inclined magnetic fields in order to guide the future design of the liquid metal blanket.

Mathematical model

$$\upsilon(\frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial y^2}) - \frac{1}{\rho} \frac{dp}{dx} + \frac{1}{\rho} \frac{1}{\mu_0} (B_0 \sin \alpha \frac{\partial B_x}{\partial y} + B_0 \cos \alpha \frac{\partial B_x}{\partial z}) = 0$$
(1)

$$\frac{1}{\mu_0}\frac{\partial}{\partial z}\left(\frac{1}{\sigma}\frac{\partial B_x}{\partial z}\right) + \frac{1}{\mu_0}\frac{\partial}{\partial y}\left(\frac{1}{\sigma}\frac{\partial B_x}{\partial y}\right) + B_0\sin\alpha\frac{\partial u}{\partial y} + B_0\cos\alpha\frac{\partial u}{\partial z} = 0$$
(2)

$$j_{y} = \frac{1}{\mu_{0}} \frac{\partial B_{x}}{\partial z}, \qquad j_{z} = -\frac{1}{\mu_{0}} \frac{\partial B_{x}}{\partial y}$$
(3)

• The presence of the electromagnetic coupling effect between the two coupling ducts will lead the 3D currents flowing to the adjacent channel. As a result, the strength of the transversal Lorentz forces will decrease in the counter-flow case when $\alpha = 0^{\circ}$.

Effect on the streamwise pressure gradient

• The electromagnetic coupling effect enhances the streamwise pressure gradient in the counter-flow case when $\alpha = 0^{\circ}$.

Velocity distributions in co-flow cases

Velocity jets along the direction of the external magnetic field.

• Electric currents leaking from one channel to the adjacent one

Velocity distributions in counter-flow cases

Effect on the transversal pressure difference

• The electromagnetic coupling effect can suppress the transversal pressure difference in the counter-flow case.

CONCLUSION

•The MHD coupling effect in the co-flow case is much weaker than that in

$\alpha = 22.5^{\circ}$

 $\alpha = 45^{\circ}$

- Velocity jets along the direction of the external magnetic field.
- Defomed short circuit currents flowing across the middle coupling wall directly.
- The existence of a large reversal velocity region.

the counter-flow case.

- The inclined transversal magnetic fields have an obvious influence on the velocity distributions in the coupling MHD duct flows.
- The electromagnetic coupling effect between the coupling channels will suppress the 3D MHD effect in the counter-flow case when the inclined angle is zero.