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ABSTRACT OUTFLOW HEATING & HOLLOW PRESSURE & TEMP. FORMATION

* High-power reconnection heating of merging ST plasmas has been developed = «In Fig. 5, the bi-directional outflow V.~40km/s equal to 70% of poloidal Alfven speed
in TS-3U, TS-4U, UTST, MAST and ST-40 experiments. All of them and PIC ~ dumps at two downstream positions where T;, n, and |B| peak in TS-3, MAST and ST-40

simulations confirmed the promising scaling of ion heating energy increasing  as a common ion outflow heating mechanism that validates the B, *-scaling.
* The hollow profiles of T, and |B| are maintained in the produce high-f STs. We can

with square of reconnecting magnetic field B .. ~ B *up to 2.3keV.

» The reconnection converts about half of B_ energy into ion thermal/ kinetic confirm the hollow T; and |B profiles at t=40us mn Figs. 5 (c) (d), in agreement with
P

ring-type high T, region observed in 2D PIC simulations of ST merging in Fig. 6(d).

energy within short reconnection time, leading us to direct access to burning

high-beta ST often with absolute min-B profile in ST-40/ TS-6. FORMATION OF REVERSED SHEAR & ABSOLUTE-MINIMUM B

* The produced high-fB ST plasmas often have reversed-shear and absolute = . pe pigh-power rec. heating produces the reversed shear profile as well as the hollow

minimum-B profiles in the second stability regime for ballooning modes. toroidal current and thermal pressure profiles in the produced high- ST, in Fig. 6.

* The absolute min-B profile was clearly measured in TS-3U and TS-4U 1n Fig. 7 and
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FIG. 2. (a) Dependence of ion temperature increment AT, on reconnecting magnetic field B,,,. of two rajectory of the reconnection heating to

merging STs and spheromaks under n,~1.5 x10"°m=3 in TS-3, TS-3U, TS-4, MAST and ST-40 device ignition and self-ignition regimes in the Brecz-scaling of rec. 10n heating CNCIgy up to 2.3keV (under 1.5x1 0'19m'3) The
‘ space of temperature (T) and density

times confinement time (n9. rec. heating converts about 2 of reconnecting (poloidal) magnetic energy to

erging/ RECU : "ER \FF ion thermal/ kinetic energy through the rec. outflow if we compress the
A fﬁ@\

and (b) the corresponding AT dependence on B,,, in 2D PIC simulations by Inoue and NIF'S group.

Fig. 4 (a) shows vertical s =
cross-section of TS-3U ST mu @ 'wsll '
/spheromak merging device [T}
with 2D magnetic probe
arrays, 2D 1on Doppler
tomography for T, and 2D
Thomson scattering for T,
(b)(c) shows photos of TS-
3U & TS-4U (UTokyo) and
(d)(e) photos of MAST

(Culham Lab.) and ST-40
(Tokamak Energy Inc.).

current sheet to the order of p,, triggering the fast reconnection. Unlike

Ohmic heating power that decrease with T, the rec. heating with no T

dependence can transform the merging STs into burning plasmas without any
additional heating like NBI.

* We found the interesting characteristics of the produced high-f3 STs: hollow
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T, and thermal pressure profiles, forming the reversed shear and absolute

mini-B profiles which are located in the second-stability regime.

» This cost-effective rec. heating can transform the merging STs directly to a-

heating region with the optimized T, area in the Lawson diagram.
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