Theory of ignition and burn propagation in inertially confined plasmas

and into the burn propagation regime

- $Y_{amp} = \frac{Yield_{\alpha}}{Yield_{no \alpha}}$ is the yield enhancement due to alpha heating
- Yield_{α} = neutron yield from simulation including alpha transport
- Yield_{no α} = neutron yield from simulation with alpha transport off
- ρR = neutron averaged shell areal density
- M_{stag} = stagnated mass at bang time
- $E_{\alpha} = \varepsilon_{\alpha} \cdot Yield_{\alpha}$ = total alpha energy produced in implosion
- E_{hs} = hot spot internal energy at bang time

The definition of ignition at $f_{\alpha} \sim 1.4$ is valid provided that the fraction of absorbed alpha particles is correctly accounted for

Absorbed fraction of alpha particles θ_{α} = alpha energy deposited into hot spot/ total alpha deposition in the domain before bang time. It is determined by calculating the Lagrangian trajectories of hot spot points back in time

A. R. Christopherson, R. Betti, S. Miller, V. Gopalaswamy, D. Cao, O. Mannion University of Rochester, Laboratory for Laser Energetics

Burn propagation causes a rapid accumulation of mass into the hot spot (M_{hs})

$$\Phi = \frac{Yield}{N_{DT}(0)} = \frac{\rho R}{\rho R + H_B}$$
$$H_B \sim \sqrt{T} / \langle \sigma v \rangle$$