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Summary
1. The coordinated coupling of four plasma-devices have realized enhancement of Compression Heatin Fuel oth
heating efficiency of the fast-ignition laser-fusion scheme. p 9 ers
e . - Indirect-dri Self-heating Capsul
> Guiding cone for efficient laser-to-electron conversion. Conventional | Laser oeordrive Hot spart R
» Laser-coil for guiding laser-generated electron beam to a fuel core. Scheme
. . indirect-drive
» Solid ball fuel for stable compression of a fuel. central ignition \
X-ray Compressed fuel Gas

» Plasma mirror for reducing mean energy of laser-produced electron.
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2. Drag heating efficiency was evaluated with electron-ion collision induced X-rays,

Heating laser Ball
namely Ko-X-ray yield and electron temperature of a heated plasma was Our scheme - — 2 1
evaluated from spectral shape of X-rays from highly-charged ions and 1N
Bremsstrahlung X-rays. I Field lind
* Hydro. instabilitigs * Relativistic « Large * MHD effects
3. For further progress to the ignition condition, we are investigating extension of Challenges |* Hot elec. generation ::f::az:f::'a afits'z'r'e + Kinetics
laser-driven magnetic field, self-generated magnetic field, dense fuel P
compression with tailored laser pulse.
Three major mechanisms of isochoric heating with REB* Heating mechanism map for high-density plasma core (300 g/cm?
*REB: Relativistic Electron Beam
Drag heating:
@Eusectron Energy transfer from relativistic electrons to
(%) bulk electrons via binary collisions. 2 The efficiency
et o = is evaluated from Cu-Ka. yield
Resistive heating: g 3 as a result of e-i collision.
Ohmic heating via a return current that is ° 10° //’ I, =1 x 1020 W/ecm2 “~4 [C. Jarrot +, Nature Phys]
driven by the fqrward REB for sustaining the 2 ) /// 7, =0.53 ym
current neutrality. 2 10 /,/ a,=4.5 The diffusion and joule heating
- t, =30 ps efficiencies are evaluated from
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Draeg Diffusive Resi:tive plasma via nonlocal-diffusive fashion. 01 1 10 100
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Guiding cone Capacitor-coil Only "clean” heating laser pulse is F;ulse contrast has been improved 5 orders of magnitude.
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