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Integral concepts such as European ESFRI Project HiPER (CCFE/UK, Academy Sciences Czech
Republic, National Programs in France, Spain, Italy and European Union funding) gave to the
different laboratories an unique opportunity to join efforts and link the design and responses
of laser, target and chamber among them in a more realistic scenario for integrated design
of a potential IFE Reactor.

The design uses Direct Drive emissions on time to give 3Dspace-time responses in
uid- dynam/cs materials performance, corrosion and tritium breeding.
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Research is now running in the physics challenges of IFE Reactor Chamber which
conducts to advance developments and spin-off in modeling and experiments
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